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Чехословацкий математический журнал, т. 12 (87) 1962, Прага 

PRIME IDEALS OF THE CARTESIAN PRODUCT 
OF TWO SEMIGROUPS 

MARIO PETRICH, Seattle, Wash. (USA) 

(Received June 5, 1961) 

The purpose of this paper is to give necessary and sufficient conditions 
for a subset of 5 X Г to be a prime ideal. 

A semigroup is a non-empty set on which an associative multiplication is defined. 
If S and T are semigroups, then by S x T we mean the semigroup consisting of the 
Cartesian product S x T of the sets S and Twith coordinatewise muUiplication. The 
semigroup S x Tis called the Cartesian product of the semigroups S and T. A non­
empty subset / of a semigroup S is called an (two-sided) ideal of S if xy, yx el for 
all X e l , y e iS; if in addition its complement in S is a semigroup (and hence / ф S), 
then / is called a prime ideal of S. We also call the empty set a prime ideal (cf. Defini­
tions 2, 2a, [1]). If A and В are sets, then A — В will denote the set of albelements 
of A which are not contained in B. A simple inductive argument generalizes the 
following theorem to the case of any finite number of semigroups. 

Theorem. Let S and T be semigroups. Then a set Lis a prime ideal of S x T if 
and only if L = (/ x T) u (S x J ) where I and J are prime ideals of S and T, 
respectively. 

Proof. We first prove sufficiency. Let / and J be prime ideals of S and T, respectiv­
ely, and let 

L = (/ X T) u (S X J) . 

If both I and J are empty, then L is also empty and is thus a prime ideal of S x T. 
Suppose that at least one of the prime ideals / , J is not empty, so that Lis also not 
empty. Let (x, u) and (y, v) be any elements of L and S x T, respectively. Then by 
definition of L, either xel or ueJ. Suppose that x eL (The case м G J is treated 
similarly.) Then xy, ухе I and thus 

(x, u) (y, v) = (xy, uv)el X T and (y, v) (x, u) = (yx, vu) el x T. 

Consequently, 
(x, w)(y, ü), (y, ü)(x, M ) G L , 
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and hence Lis a two-sided ideal of S x T. The sets S — I and T — J are not empty 
and are semigroups. Hence (5 — /) x (Г ~ J ) is a semigroup. But 

{S - I) X (T- J)=: S xT- L 

and hence the complement of L is a semigroup. Thus L is a prime ideal of S x T. 

We now prove necess i ty . Let Lbe a prime ideal of S x T. If Lis empty, take 
I and J to be empty. Suppose then that L is not empty. Let (x, u) be any element of 
L. We assert that either {x} x T or S x {u} is contained in L. For if we suppose the 
contrary, then there exists an element v еТ such that (x, v)ф L and an element 
у e S such that (y, u) ф L. We have 

(l) (x, v) {y, u) (x, v) (y, u) = (xyxy, vuvu) = (xy, v) (x, u) (y, vu) . 

The expression on the left of (1) is in S x T — L since S x T — Lis я semigroup; 
but the expression on the right is in L since (x, u) e L and L is a two-sided ideal. 
These two statements are plainly incompatible. This proves the assertion. 

Let / = { X G 5 | {X} X TŒ_L} and J = {ueT\S x {u} с L}. Then 

L={I XT)KJ{S X J). 

For if (x, u) e L, then either {x} x Г or S x {u} is contained in L, which implies 
that either x EI or и e J and thus in either case 

{x,u)e{l X T)u{S X J). 

The reverse inclusion is obvious. 

We now show that / is a prime ideal of S. (One proves similarly that J is a prime 
ideal of T.) If/ is empty, it is a prime ideal by definition. Suppose that / is not empty. 
The set S — / is not empty for otherwise S = I and hence L= S x T, which is im­
possible since L is a prime ideal of S x T. Similarly Г — J is not empty. Let x and у 
be any elements of S ~ /, and let и be an element of T — J. Then 

(x, 4 (y, w) e (S - / ) X ( T - J ) . 

Since L i s a prime ideal of S x Г, its complement (S — I) x ( T ~ J ) is a semi­
group and thus 

(x, u) (y, u) = (xy, u^) E{S - I) X (T - J ) . 

Hence xy e S ~ I and thus S — / is a semigroup. 
Let X, y, and и be any elements of / , S, and T — J, respectively. Then (x, u) e L 

since X e / . It follows that 

(x, u) (y, u) = (xy, u^) e L and (y, u) (x, w) = (yx, u^)eL, 

since Lis a two-sided ideal. Since Г ~ J is a semigroup, we have u^ еТ ~~ J. But 
then 

(xy, u^'), {yx, u^) e L 
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implies that 
{хул1^), {yx,u^)el X T and thus xy^yxel. 

Hence / is a two-sided ideal, and therefore / is a prime ideal of S x T. 
The writer wishes to express his gratitude to Professor HERBERT S. ZUCKERMAN 

for his guidance in this research. 
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Резюме 

ПРОСТЫЕ ИДЕАЛЫ ПРЯМОГО ПРОИЗВЕДЕНИЯ ДВУХ 
ПОЛУГРУПП 

МАРИО ПЕТРИЧ, Seattle, Wash. (USA) 

Простым идеалом / полугруппы S называется или пустое подмножество, 
или двусторонний идеал J Ф S, для которого S — I является полугруппой. 

В статье доказываестя следующая теорема: 
Пусть S, Т — полугруппы. Мно:>Рсестбо La S х Тявляется простым идеалом 

тогда и только тогда, если L = (/ х Т) и {S х J), где I -~ простой идеал по­
лугруппы S, и J — простой идеал полугруппы Т. 
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