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Yexoc10BanKHii MaTeMaTHYeCKril kypuaa, 1. 11 (86) 1961, Ilpara

ON BORELIAN AND BIANALYTIC SPACES

(Preliminary communication)

ZpENEK FroLik, Praha
(Received September 20, 1961)

Spaces which are Borel subsets of some complete metrizable separable
space posses important properties; they will be termed Borelian spaces in
the classical sense here, and their continuous images, if metrizable, will be
called analytic spaces in the classical sense. In the present note the definition
of Borelian spaces is extended to the class of all completely regular spaces in
such a way that certain deeper theorems remain true.

1. NOTATION AND TERMINOLOGY

All spaces under consideration are supposed to be completely regular. Letters X,
Y, T, Z always denote spaces. For any X, F(X), Z(X), K(X) denote, respectively, the
family of all closed sets, zero-sets, compact sets contained in X. With a given fami-
ly ./ of subsets of X there are associated the following families of sets: Z(.4#), the
smallest family containing .# and closed under countable unions and countable
intersections, and %.(.#), the smallest family of sets containing .# and closed under
countable intersections and countable disjoint unions.

It is clear that, for any X, the family #(Z(X)) is closed under complementation.
By M. KATETOV the elements of Z(Z(X)) will be called Baire sets of X. If X is metri-
zable (more generally, if X is perfectly normal), then F(X) = Z(X), in particular,
B(Z(X) = B(F(X)). Thus for metrizable spaces, Borel sets and Baire sets coincide.
In general, the family Z(F(X)) is not closed under complementation.

2. BORELIAN SPACES

Definition 1. A Borelian structure in X is a sequence {.#,} of countable disjoint
coverings of X (not necessarily open or closed) such that

S8

(a) if M,, N, e .#, and M, + N, for some k, then N M,n N N,=0;

n=1 n=1

(b) the sequence {.#,} is complete.
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Definition 2. A space X will be called Borelian if there exists a Borelian structure
in X. The family of all Borelian subspaces of a given space X will be denoted by B(X).

The following assertions (1)—(4) follow directly from the definition.

(1) If X is Borelian, then F(X) < B(X).

(2) One-to-one continuous images of Borelian spaces are Borelian.

(3) The inverse image under a perfect mapping') of a Borelian space is Borelian.

@ #4(B(X)) = B(X).

Indeed, if {#,} is a Borelian structure in X and Y is closed in X, then {¥Y n #,}
is a Borelian structure in Y. The proof of (2)—(4) is quite analoguous. If {.#,}
is a Borelian structure in X and X < Y, then for every M in .#,, there exists a Z(M) €
€ B(Z(X)) with Z(M) > M such that the family {Z(M); M € .#,} is disjoint. From
this fact it follows at once

®) B(X) < #*(F(X) v 2(Z(X))) .

It is easy to see that the space of all rational numbers and the space of all irrational
numbers are Borelian spaces. By preceding results from this fact it follows at once
that the complement of a zero-set of a compact space is a Borelian space, and finally,
we obtain

(6) Every Baire set of a compact space is a Borelian space.

Now it is easy to prove

(7) If X is Borelian, then B(X) = Z.(F(X) v 4(Z(X))).

In general the family B(X) is not closed under countable unions, moreover, o-
compact space may fail to be a Borelian space. For example, let X be an uncountable
compact space with only one accumulation point, say x, and let ¥ be the discrete
space of positive integers. Identifying the points of the subset (x) x Y of the product
space X x Y we obtain a g-compact space which is not Borelian.

It is easy to prove that every Borelian space is a Lindelof space (and hence, a nor-
mal one). By (7) from this fact it follows at once:

(8) A metrizable space X is Borelidn if and only if X is a Borelian space in the clas-
sical sense.

The preceding assertion shows that our definition of Borelian spaces is an extension
of the classical one. In the following assertion all Borelian spaces are described in
terms of classical Borelian spaces and one-to-one perfect mappings.

(9) A space X is Borelian if and only if X is a one-to-one continuous image of

IyBya perfect mapping is meant a continuous and closed mapping such that the preimages
of points are compact.
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a space which admits of a perfect mapping onto a closed subspace of the space of all
irrational numbers.

The first part of (9) follows from the preceding assertions. To prove the second
part, let {.#,} be a Borelian structure in X. Declaring all sets from .#,, n=1,2,.
open we obtain a space Y and {.#,} remains a Borelian structure in Y. Now 1dent1-
fying the points of sets of the form n M,, where M, e ./, we obtain a closed

n=1

subspace of the space of all irrational numbers.

3. BIANALYTIC SPACES

In the classical descriptive theory of sets the proofs of certain theorems concerning
Borel sets depend on the theory of analytic spaces (in the classical sense). These
applications of analytic spaces make use of the fact that a subspace M of a complete
metrizable separable space X is a Borelian space if and only if both M and X — M
are analytic spaces.

By V. E. SNEDER and G. CHOQUET a space X will be called analytic if X is a con-
tinuous image of a space which belongs to Z(K(Y)) for some Y.

Definition 3. A space X will be called bianalytic if both X and K — X are analytic
for some compact space K o X.

The following assertion has been proved by the author:

(10) If X and Y are disjoint analytic subspaces of a space T, then there exists
a Be #(Z(T)) with X< Bc T—Y.

From this result and from the properties of analytic spaces it follows at once:

(11) If K is a compact space then X < K is a Baire set in K if and only if both X
and K — X are analytic spaces.

It follows:

(12) A space X is bianalytic if and only if X is a Baire set of some compact spaces.

By (7) we have that every bianalytic space is a Borelian one. The class of all bia-
nalytic spaces is not closed under one-to-one continuous mapping. For example,
if X is the discrete space of positive integers and if ¥ = X u (x) c f(X) where
x € B(X) — X, then Y is a one-to-one continuous image of X; however, X is bianalytic
but Y is not. It is easy to show:

(13) A space X is Borelian if and only if X is a one-to-one continuous image of
a bianalytic space.
From (10) we can deduce the following internal characterization of Borelian spaces:

(14) A space X is Borelian if and only if there exists a complete sequence {.#,}
of countable disjoint coverings of X such that the elements of /#,, n= 1,2, ..., are
analytic spaces.
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