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THE TOPOLOGICAL PRODUCT OF TWO PSEUDOCOMPACT
SPACES

ZpENEK FrROLIK, Praha
(Received September 11, 1959)

The present paper is concerned with the following three questions
(all spaces are supposed completely regular):

(1) Supposing P and @ pseudocompact, under what conditions is the
topological product P X @ a pseudocompact space? According to [3],
P x @ is pseudocompact if any only if f(P X @) = B(P) X B(Q). We
give a new and short proof of this proposition and in addition we deduce
some further necessary and sufficient conditions (Section 2).

(2) Under what conditions on a space P is the topological product
P x @ a pseudocompact space for every pseudocompact @ ? The class
(denoted by %) of all such spaces P is investigated in section 3.

(3) Under what conditions on a space P does every closed subspace
of P belong to P? The class of all such spaces is studied in the section 4.

In this section we recall some results conserning pseudocompact spaces
and prove a few lemmas which will be needed in the whole paper.

The terminology of J. KerLEY, General Topology, is used throughout.
A subset of a space is always considered as a subspace. The closure of a subset M
of a space P is denoted by MP, or merely by M if no confusion is possible.
B(P) denotes the Stone-Cech compactification of a (completely regular) space P.
Function shall mean a real-valued function.

A space P is said to be pseudocompact if (and only if) every continuous
function on P is bounded, or equivalently, if every continuous bounded
function assumes its bounds. A completely regular space is pseudocompact
if and only if every locally finite family of its open subsets is finite, or equi-
valently, if there exists no locally finite sequence of its non-void open subsets.
A regular closed subset (i. e. a set of the form M = int M) of a completely
regular pseudocompact space is a pseudocompact space. For further information
(in a more general situation) see [2].
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1.1. Lemma. Let X be a space and let K be a compact one. Let f be a continuous
function on X X K. For each x,, x, and x in X put
(X, T5) = iup (1, k) — f(zs, k)]
€K

and
F(x) = inf f(x, k) .

keK

Then @ is a continuous pseudometric tn X and F is a continuous function on X.

Proof. The second statement of the lemma is an obvious consequence
of the first. Since ¢ is a pseudometric (¢ is finite since K is compact and hence
pseudocompact), to prove the continuity of ¢ it is sufficient to show that for
each x in X and every ¢ > 0 there exists a neighborhood U of x such that
g(x, x') < ¢ for each 2’ in U. By the continuity of f, for each k in K we may
choose a canonical open neighborhood W(k) = U(k) x V(k) of (, k) such that
f varies <& on W(k). The space K is compact and consequently for some
finite subset M of K the family {V(k); ke M} covers K. Put U = A {U(k);
k e M}. For each 2’ in U and each k in K we have

If(z, k) — f(2', k)| < ¢.

Thus ¢(z, ') < ¢ for each 2’ in U; this establishes continuity and completes
the proof.

1.2. Lemma. Let X and Y be completely reqular infinite spaces. If the topological
product B = X X Y is not pseudocompact then there exists a locally finite
sequence {U, X V,} of non-void canonical open subsets of X X Y such that the
sequences {U,} and {V,} are disjoint.

Proof. If one of the spaces is not pseudocompact, for instance X, then there
exists a locally finite disjoint sequence {U,} of non-void open subsets of X.
Selecting a disjoint sequence {V,} of non-void subsets of Y (this is possible
since Y in an infinite Hausdorff space), we obtain a sequence {U, X V,) with
the desired properties.

Now let us suppose that X and Y are pseudocompact spaces. Let {U, X V,;
n e N} be a locally finite sequence of non-void open subsets of X X Y. First
we shall prove

1.2.1. Let {U, X V,;n e N’} be a subsequence of the given sequence. For
each « in X there exists an open neighborhood U of z such that U n U, = 0
for an infinite number of n ¢ NV'.

For proof, suppose the contrary. Selecting a cluster point y of {V,; n e N'},
it is easy to see that (z, y) is a cluster point of {U,, X V,;n ¢ N’'}. This contra-
diction completes the proof of 1.2.1. 4

According to 1.2.1 we can choose by induction a sequence n,, n,, ... in N and
open non-void U, c U,'L‘ such that the sequence {U,,} is disjoint. Applied the
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same argument to the sequence {U, X V,}, we obtain a subsequence {n;}
of {n,} and open non-void V,,ik c V,',ik such that the sequence {V,,‘k} is disjoint.
The sequence {U, o X V'"ck} possesses the desired properties.

1.3. Lemma. Let f be a conttnuous function on a pseudocompact completely
reqular space X X Y. For each x in X put
F(x) = inf f(x,y) and G(x) = sup f(z, y).
yeY yeY
Then F and G are continuous functions on X.

Proof. Clearly it is sufficient to prove only the continuity of F. Since the
function F is upper semi-continuous as an infimum of continuous functions
f(., ), y € Y, it is sufficient to show that F is lower semi-continuous. Suppose
that F is not lower semi-continuous. There exists an z, in X and a real number
& > 0 such that for every neighborhood U of x, there exists an (z, y)in U X Y
with f(z, y) < F(x,) — 3e. By introduction we can construct points (z,, ¥,)
and open neighborhoods W, = U, x V, and W, = U, X V, of (,,y,) and
(g, ¥,) such that

(i) f varies < & on both W, and W,

@) U,.,>U,,

Having chosen z;, y;, W; and W; for ¢ < n, put U = U,_, if n > 1 and
U = X if n = 1. By our assumption we can choose (¥,, ¥,) ¢ U X Y such that
(iil) holds. According to the continuity of f there exist U,, V, and U, such that
(i) and (ii) holds. The space X X Y is pseudocompact and completely regular
and hence thefe is an accumulation point (z, y) of the sequence {W,}. Since
f(x) < F(xy) — 2¢ on W, by continuity of f we have

@, y) = Flx,) — 2.
On the other hand, from the condition (ii) we conclude that (z, y) is also an
accumulation point of {W,}. Since f(z) > F(x,) — ¢ for  in W, according to
the continuity of f we have

@, y) = F(xo) — .
This contradiction completes the proof of the lemma.

1.4. Lemma. Let f be a continuous function on a pseudocompact completely
regular space X X Y. If K is a compactification of Y such that every function
f(x, .) has a continuous extension to K, then f has an continuous extension to
X x K.

Proof. Extending continuously every function f(z,.) on (z) X K, we obtain
a function f* on X x K. We shall prove that f* is continuous. Given an
(6, ¥o) € X X K and &> 0, we have to find a neighborhood W = U x V
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of (2o, ¥o) such that [f*(xo, ¥o) — f(@, ¥)| < & for each (z,y) in W. Choose an
open neighborhood V of y, in K such that |f*(z,, y) — [*(@,, yo)| < & for
each y in V. The space V' n Y'Y is pseudocompact and hence by lemma 1.5 we
may choose an open neighborhood U of x, such that for each « in U both

inf f(z, y) > f*(x,, yo) — 2¢

yeVaY

sup f(z, y) < f*(x, yo) + 2.

yeVaY

and

In consequence we have |f*(x, y) — f*(@,, ya)| < 2¢ for each (z,y) in U x V.

II

2.1. Theorem. The following conditions on infinite completely regular spaces
X and Y are equivalent.

(1) T'he topological product X X Y 1s a pseudocompact space.

(2) B(X X Y) = B(X) X B(Y), that is, very bounded continuous function on
X X Y posesses a continuous extension to f(X) X B(Y).

(3) If f is a bounded continuous function on X X Y, then for every ¢ > 0 there
exists a finite cover Y = {A,, A,, ..., 4,} of X X Y consisting of canonical open
sets A; on each of which | varies < e.

Proof. Suppose that (1) holds and let f be a continuous function on X X Y.
By lemma 1.4 there exists a continuous extension of f to X x f(Y), and by
the same lemma this extension possesses a continuous extension to f(X) X
X B(Y). Hence (1) implies (2).

Suppose (2) holds, and let f be a bounded continuous function on X X Y.
Denote by f* the continuous extension of f to f(X) x B(Y). The family %, of
all canonical open subsets of S(X) X f(Y) on which f* varies < ¢ is an open
cover of the compact space f(X) X f(X); hence some finite subfamily %, of
A, is also a cover. The family U of all intersections 4 N (X X Y) with 4 ¢ Y,
has the desired properties. -

To prove that (3) implies (1), suppose non (1). By lemma 1.2 there exists
a locally finite sequence {W,} = {U, X V,} of non-void canonical open subsets
of X x Y such that the sequences {U,} and {V,} are disjoint. Choose points
Z, e W, and continuous functions f, < 1 such that f,(z,) = 1 and f,(z) = 0

e
for each znone W,. Put f =3 f,; this is a bounded continuous function
n=1

on X X Y,andif 4 = 4, X 4,is a subset of X X Y containing two points z,
and z, with n == k, then f varies = 1 on 4. Indeed, if z, = (x;, ¥,), 1 = 1, 2,
then the point (z,, y,) belongs to 4 and f(z,, y,) = 0. Hence f(z,) — f(z,, yx) =
= 1. If follows that the condition (3) is not satisfied with our f and & = 1.
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2.2. Theorem. T'he following conditions on completely reqular infinite spaces X
and Y are equivalent.
(1) X X Y s a pseudompact space.
(2) The spaces X and Y are pseudocompact and for every bounded continuous
function on X X Y the mappings
Dy —f(-,y) e C(X)
and
V:x—f(z, ) e CY)
of Y to C(Y) and X to C(Y) respectively, are continuous.

(3) For every bounded continuous function f on X X Y, the pseudometrics
P2y, ¥p) = sup (@1, y) — H@s y)l
ye
and
V(1 ¥2) = SUP (2, 32) — f(, )|

are continuous and totally bounded in X and Y, respectively.
Proof. Denoting by || || the norms in C(X) and C(Y), we have

P, 25) = [lf(2y, ) — f(2, -l
and

Y Y2) = I y1) — 15 w2l -
It follows that the mappings @ and ¥ are continuous if and only if the pseudo-
metrics ¢ and y are continuous.

Suppose (1) holds, and let f be a bounded continuous function on X X Y.
By theorem 2.1 there exists a continuous extension f* of f to (X) x p(¥).
By lemma 1.1 the pseudometrics

@*(@y, @) = sup |f*(xy, y) — [*(@s, y)|
yeB(Y)
and

v*(y1, ¥2) = sup [f*(=, y1) — (=, y2)|
yeB(X)

are continuous in $(X) and B(Y) respectively. Evidently ¢ and y are restrictions
of ¢* and y*. Thus ¢ and y are continuous. X and Y are pseudocompact since
X X Y is a pseudocompact space. Hence (1) implies (2). Clearly (2) implies (3).

It remains to prove that (3) implies (1). Let f be any bounded continuous
function on X X Y. By (3), the pseudometrics ¢ and y are totally bounded
and consequently we can find finite open coverings |4, and ||B,|| of X and Y
respectively, such that the diameters of 4; in ¢ and B; in y are less then e.
Then {4, X B;} is a covering of X X Y by canonical open sets, and clearly,
f varies on every 4, X B, < 2e¢. By theorem 2.1 the space X X Y is pseudo-
compact. The proof is complete.



Note. Analogous theorems hold for infinite numbers of factors. To extend
these theorems it suffices to prove that every bounded continuous function
on a pseudocompact space X{P,;a e A} can be aproximated uniformly by
continuous functions depending only on a finite number of coordinates.

III. THE CLASS 9

3.1. Definition. Let P be the class of all completely regular spaces X such
that for every pseudocompact completely regular space Y the topological
product X X Y is pseudocompact space.

Evidently:

3.2. If a completely regular space X is a continuous image of a space belonging
to P, then X belongs to P. If X and Y belong to P, then the topological product
X X Y belongs to P. If X X Y belongs to P then both X and Y belong to P.
If F is a regularly closed subspace (that is, ¥ = int F), of a space X ¢ 9 then F
belongs to .

3.3. Theorem. Let X be a pseudocompact space such that each point of X has
a neighborhood belonging to P. Then X belongs to P.

‘Proof. Suppose the contrary, that for some pseudocompact completely
regular space Y the topological product X x Y is not pseudocompact. Let
{U, X V,} be a locally finite sequence of non-void open subsets of X x Y.
We shall prove that {U,} is a locally finite sequence, in contradiction with the
pseudocompactness of X. Given an # ¢ X we choose a neighborhood U of x
belonging to . Henge U X Y is a pseudocompact space. In consequence
the intersection (U, X V,) n (U X Y) is non-void for only a finite number
of n’s and hence U, n U == 0 only for a finite number of »’s. This establishes
the local finiteness of {U,,} and completes the proof of 3.3.

3.4. Compact spaces belong to P.

Proof. Let X be a pseudocompact space and let K be a compact space. To
prove that X X K is pseudocompadct, it is sufficient to show that every bounded
continuous function f on X X K assumes its lower bound. But this is an ob-
vious consequence of lemma 1.1. Consider the function ¥ of this lemma. X is
a pseudocompact space and hence assumes its lower bound, at a point x. The
function f(z, .) on () X K assumes its lower bound at a point y. Evidently f
assumes its lower bound at (x, y). \

3.5. Theorem. A space X belongs to P if it satisfies the following condition:

3.5.1. If A is an infinite disjoint family of non-void open subsets of X, then
for some compact subset K of X the intersection K n A is non-void for an inﬂm’te
number of sets A belonging to .

Proof. Suppose the contrary, that X does not belong to P. Hence, for some
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pseudocompact completely regular space Y, the topological product X x Y
is not a pseudocompact space. By lemma 1.2 there exists a locally finite sequence
{U, X V,} of non-void open subsets of X X Y such that the sequence {U,}
is disjoint. By condition 3.5.1 there is a compact space K meeting an infinite
number of sets U,. Consider the space K X Y. By 3.4 the space K X Y is
pseudocompact. But {(U, X V,) n (K X Y); U, n K == ¢} is a locally finite
sequence of non-void open subsets of K X Y. This contradiction completes
the proof.

The simple condition 3.5.1 is not necessary for X to be an element of .
First we prove a necessary and sufficient condition and then we shall show
that there exists a space satisfying this condition which does not satisfy the
condition 3.5.1.

3.6. Theorem. A completely regular space X belongs to Y if and only +f it satis-
fies the following condition:

3.6.1. If A is an infinite disjoint family of non-void open subsets of X then there
exists a disjoint sequence {U,} in U such that for every filter N of infinite subsets
of N = {n} we have
(*) nuvu,=+0.

NieR nelV,

Proof. First suppose 3.6.1 and let ¥ be a pseudocompact space. We have
to prove that X X Y is a pseudocompact space. Suppose that X X Y is not
pseudocompact.

Evidently the spaces X and Y are infinite. By lemma 1.2 there exists a se-
quence {U, X V,} of non-void open subsets of X X Y such that the sequence
{U,} is disjoint. By condition 3.6.1 there exists a subsequence {U,.} of {U,}
such that (*) holds for every filter 0 in the set N of all the integers n’. Consider
the locally finite sequence {U, X V,;ne N}. Let y be a cluster point of
{V.; neN}. Let B be the family of all neighborhoods of the point y. For each
Be®B put NB)={n;neN,BnV,+0}. Evidently N = {N(B); Be DB}

is a filter in N. By our assumption we may choose an zin A U U,. It is
NyeR neN1
easy to see that (x,y) is a cluster point of the sequence {U, X V,;ne N}.

This contradiction completes the proof of sufficiency of the condition.

For the proof of necessity, suppose that a completely regular space X does
not satisfy the condition 3.6.1. Then there exists a countably infinite disjoint
family {U,; n € N} of non-void open subsets of X such that if N, is any infinite
subset of N, then
(*%) nuv,=9

NyeR nelNy
for some filter N in N,. Selecting points z, in U, and denoting the set of all
these z, by Z, consider the space ¥ = Z?* — (X — Z). By our assumption,
the space Y is pseudocompact since every infinite subset Z, of Z has an accumul-
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ation point in Y. Indeed, if we denote by N, the set of all the »’s with z, € Z,,
there exists a filter 0 in NV, such that (**) holds. But every point of the non-void
set ————————P

n U WU,nZ

NieR nel

is an accumulation point of Z,in Y. We proceed to prove that the space X x ¥
is not pseudocompact. First note that the one-point sets (z,) are open in Y.
Consider the family % = {U,, X (z,); » € N} of non-void open subsets of X X Y.
We shall prove that U is locally finite. Let z be a cluster point of Z in Y. Let U
be the family of all intersections Z n W, where W is a neighborhood of z.
Then by our construction

Nnuu =9

ZyeR 2,€2,
and hence for each x in X we may choose a neighborhood U of z and a set Z’
in N such that

Uz' U, nU=9.
Selecting a neighborhood V of z in Y such that Z n V = Z’, it is easy to show
that U X V is a neighborhood of (z, z) meeting no set U, X (z,), n ¢ N. The
proof of theorem 3.6 is thus complete.

3.7. Example. Let K, (n = 1, 2, ...) denote the closed interval (2n, 2n + 1)
of real numbers. Let R, and I, denote the set of all the rational and all the irra-

©
tional numbers of K, respectively. Denote the set U K, by R. There exists a sub-

n=1

space X of f(R) containing R and satisfying the following two conditions:

391.f U, (mn =1, 2,...) are non-void open subsets of K,, then
U U, +90
Nye®y neN,
for every filter Win N = {1, 2, ...}

3.7.2. There exists no compact subset K of X meeting an infinite number
of sets K,.

Construction. Let M, be the family of all sets M, c R ot rational numbers
such that the sets M; n K, consist of one point analogously, denote by M,
the family of all sets M, c B such that for each n the one-point set M, n K,
contains an irrational number. Let #(N) be the Stone-Cech compactification
of the discrete space N of all positive integers. Choose disjoint dense subspaces
P, and P, of B(N) — N such that P, u P, = B(N) — N.If now M «M; u M,,
then the mapping n — y, e M n K, is homeomorphic. Clearly this mapping
has a (homeomorphic) extension ¢,, to S(N). Put

X =R v U{gu[P,]; M €My} 0 UlgylPol; M e My}
It is easy to see that the space X possesses the properties 3.7.1 and 3.7.2.
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IV. THE CLASS 9%,

4.1. Definition. Denote by Pr the class of all spaces X such that every closed
subspace of X belongs to 9.

4.2. Theorem. A completely regular space X belongs to Vp if and only if it
satisfies the following condition:

4.2.1. If M is an infinite subset of X, then for some compact subspace K of X
the intersection of M and K is an infinite set.

Note. It is easy to see that 4.2.1 is equivalent to the condition

4.2.2. Every infinite subset of X contains an infinite subset with a compact
closure in X.

Proof of theorem 4.2. Sufficiency is a quite simple consequence of 3.5..
First notice that the condition 4.2.1 is F-hereditary, that is, if a space X
satisfies the condition 4.2.1 then every closed subspace of X also satisfies
this condition. In consequence it is sufficient to show that any space X satis-
fying the condition 4.2.1 belongs to . But condition 4.2.1 implies condition
3.5.1; hence by 3.5, X belongs to .

For the proof of necessity, suppose that a completly regular space X does.
not satisfy the condition 4.2.1. Since X is a Hausdorff space, there exists an
infinite discrete subset N of X such that no infinite subset of N has a compact.
closure in X. Denote by F the closure of the set N in X. Put

_ Y=Nvu BF)—F).
By our hypothesis every subset of N has an accumulation point in Y, and
consequently, the space Y is pseudocompact. We shall prove that the space
R = X x Y is not pseudocompact so that F does not belong to 9. Consider
the subset
M = {(n,n);neN}
of R. Clearly every points n ¢ N (considered as a subset) is open in both X and Y.

Hence the set M is open in R. On the other hand, the set M is closed in R (see
[2], lemma 1.5). The proof is complete.

4.3. Theorem. The topological product of any countable subfamily od Pp-
belongs to Py.

Proof. Evidently a T;-space X satisfies 4.2.2. if and only if it satisfies the
following condition:

4.2.3. If {z,} is a sequence in X, then for some subsequence {x,} of {z,}
the set of all the z,’s has a compact closure in X.
@©

Let #, 4 = 1,2, ..., belong to Pp. Put X = X X,. We have to prove that.

-1
the product space X belongs to Pp. It is sufficient to show that X satisfies.
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the condition 4.2.3. Let {x,;ne N} be a sequence in X, z, = {x:,, te N},
X, satisfies 4.2.3. and thus there exists an infinite subset N, of N such that the
set of all the %, n € NV, has a compact closure in X,. Proceeding by induction,
we obtain a sequence {N,; n € N} of infinite subsets of NV such that N, > N,
and that the set of all 7,7 e N,, has a compact closure in X,. Now choose
a subsequence {w,} of {z,} such that n, e N;. Denote by Y,, 1 =1,2,...,
the closure in X, of the set of all the 2%, £ = 1, 2, .... The spaces Y, are com-
pact by construction. In consequence the product space ¥ = X Y, is compact.
i=1

The closure of the set of the z,,, k = 1, 2, ..., as contained in Y, is a compact
space. The proof is complete.

The following example shows that the topological product of an uncountable
subfamily of P need not belong to Pp.

4.4. Example. Let N be the contably infinite discrete space. For each z in
B(N) — N denote by K, the subspace B(IN) — (x) of S(IN). Let M be a subset
of B(N) — N such that every infinite subset of N has an accumulation point
in M (it is well known that there exists such a subset with potency 2%). The
space K = X{K,; x e M} does not belong to Pp.

Proof. We shall prove that K does not satisfy the condition 4.2.2.

For each y in B(N) — M denote by g(y) the point of K having all coordinates
equal to y. Evidently ¢ is a homeomorphic mapping from g(N) — M to K.

——K
Consider the subspace g[N] of K. Since g[N] = g[f(N) — M] (see [2], Lemma
1.4), the subset g[N] of K contains no subset with a compact closure in K.
The proof is complete.
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Pesome

TOIIOJIOTMYECHOE ITPON3BEJEHNE
ABYX IICEBOJOKROMITAKTHBIX ITPOCTPAHCTB

3AEHER ®POJINK (Zdenék Frolik), IIpara

OCHOBHBEIM Pe3yJIbTaTOM BTOPOIl 9aCTH ABIAETCA CIELYOIas TeopeMa:
Teopema. Cuaedyowue ceolicmsea G6GeCKOHEUHBIL 6NOAHE DPESYAAPHBIL NPO-
cmpancme X u Y akeusasenmuui:

,
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(1) Tonowoeuuneckoe npoussedenue X X Y agasemcs nces00KOMNaKmulm npo-
CMPAHCTNBOM.

(2) BX X Y) = B(X) X B(X), m. e. ecaryio oepanudeHHyl HENPePLISHYIO
Pyuryuio na X X Y moocno nenpepuisrno npodosncums na f(X) X p(X).

(3) Ecau f-oepanuuennas mnenpepuisnas ¢ynryus na X X Y, mo das ecs-
K020 & > 0 cywecmeyem koneurnoe omrpumoe nokpumue {A; X By, ..., A, X
X B,} npocmpancmea X X Y mak, umo das 1 =1, 2, ...

xed; X By, yed; X B; = [f(x) — fly)| <.
(4) IIpocmpancmea X u Y nceedokomnakmusl u 04s 6CAKOU 02DAHUNCHHOU
u Henpepuvienoil ynkyuu f na X X Y omobpamcenus
:y=>f, ) e CX) u y:x—>flz, ) e CX)
npocmpancmsa Y ¢ C(X) u X ¢ C(Y) nenpepuisnst.

(5) Jlas scaroit oepanuvennoii nenpepuvignoii gynryuu f na X X Y dyuryuu

@2y, x5) = sup |f(z;, y) — f(=,, ¥)]

yeY

YY1, ¥2) = sup [f(z, y,) — f(z, ¥,)]

yeX
SABASI0 MCA 86NONAHE 02PAHUMEHHBIM U HENpepuleHulmMU ncet;&o.uempunaMu.

B tperseil wacrtu paccmarpuBaeTcda Kiacc Y BceX BIOJIHe perylspHBIX
upocrpancTs P, A KOTOPHX TomoJIorndeckoe mpomssefenne P X @ 1mceBmo-
KOMIAKTHO JUIS BCAKOIO ICeBIOKOMIIAKTHOrO npocrpaHcTBa (. Hommaxrble
IpocTp aHeTBA npmHamIeskar kiaccy Y. [amee,

P, X Py,e V<P, eV, P,e®,.
Jaetcs mocratodnoe n HEOGXOAMMOE YCIIOBHE JJISL TOTO, YTOOBI IIBOJIHE PeryJyap-
HOE MPOCTPAHCTBO HPWHAIIEKATIO Kiaaccy P.
B 4werseproit wvactu pacemarpuBaerca wiace Pp. IIpocrpancrBo P upu-

HaJUIeRHUT KiIaccy Pp TOrJa I TONBKO TOTJA, €ClIU BCAKOE 3aMKHYTOE IIOANpO-
crpaHcTBa P mpuHauexut Kiaccy P.

Teopema. Bnoane peeyaspunoe npocmpancmso P npunadaencum P, mozda
& moavko moeda, ecau das ecako20 beckoneurnozo M c P cywecmeyem romnaxm-
#noe K c P mar, umo K n M 6eckoneurno. Tonoaozuueckoe npousgederue cuem-
2020 uwucaa npocmpancms u3 kaacca P npunadiencum Pg.
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