Czechoslovak Mathematical Journal

Miloslav Jifina
On regular conditional probabilities

Czechoslovak Mathematical Journal, Vol. 9 (1959), No. 3, 445-451

Persistent URL: http://dml.cz/dmlcz/100368

Terms of use:

© Institute of Mathematics AS CR, 1959

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100368
http://dml.cz

YexocaoBankuii MaTeMaTHIeckHii RypHai, T. 9 (84) 1959, IIpafa

ON REGULAR CONDITIONAL PROBABILITIES

MILOSLAV JIRINA, Praha
(Received September 5, 1958)

In the paper new sufficient conditions for finite and complete addi-
tivity of conditional probabilities are given.

1. Introduetion. Several methods have been used in studying the regularity
of conditional probabilities, i. e. the fact that, under certain assumptions,
conditional probabilities behave like ordinary probability measures (see [1], [2],
[3]). For these methods it is essential that the whole o-algebra be separable.
The method of the present paper makes possible the restriction of the assump-
tion of separability to the c-algebra of conditions. The method depends on the
construction of the conditional probability as the limit of a sequence of condi-
tional probabilities which are trivially regular.

In the whole paper, a basic set X, a o-algebra § of subsets of X and a proba-
bility measure 7 on S are assumed given. The  least o-algebra generated by
a system T of subsets of X will be denoted by o(T). If T c § is a g-algebra, then
N(T) will denote the system of all subsets of z-nullsets from T,i.e. M ¢ N(T) if
and only if there exists a N e T such that M c N and =(N) = 0. We shall write
T = o(T u N(T)) (the completion of T).

If Tis a o-algebra, T c S, f a bounded function on X and B e T, then we shall
denote the upper and the lower integral on B with respect to the measure =

restricted to the domain T by (T) ,! f(x) dn(z) and (T) _f f(x) dn(z) respectively.
More precisely, B n i
(T)f () dn(2) = int 3, 2(B,) sup f(z)

zeE;

where the inf is taken over all the finite disjoint and T-measurable partitions
of B, and similarly for the lower integral. If the upper and lower integrals coin-
cide, we shall denote their common value by (T)[f(x) dn(x). This is always the

case if f is T-measurable. B
Let T be a o-algebra, T c S. There exist functions z(., .) on the 'domain

X X § such that
a(., A) is T-measurable for all A¢S, (1.1)
(T) [n(x, A) dn(x) = 7(A n B) forall AeSand BeT. (1.2)
B
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The class of all z(., .) which satisfy (1.1) and (1.2) will be called the conditio-
nal probability with respect to T') and will be denoted by I7(T). The conditional
probability Z77(T) will be called regular if there exists a n(., .) e ZI(T) such that
n(x, .) is a probability measure on S for every x e X. II(T) will be called semi-
regular if there exists n(., .) e [I(T) such that for every x e X

7(x, .) is non-negative and finitely additive , (1.3)
n(x, X)=1. (1.4)

Let T, (n = 0, 1, ...) be o-algebras, T,, c S. We shall say that the conditional
probabilities I1(T,) converge almost surely to II(T,), if there exist z,(., .)e
e II(T,) (n = 0, 1, ...) such that for every 4¢SS

{ve X: my(x, A) 4 mo(x, A)} e N(T) . (1.5)

Evidently, the validity of (1.5) does not depend on the special choice bf
(., ) e [I(T,).

2. Semi-regular conditional probabilities. We first prove a limit theorem.

2.1. Let T, (n=0,1,...) be o-algebras, T, c S, let II(T,) be semi-reqular
for n =1, and suppose that II(T,) converges almost surely to II(T,). Then
TI(T,) is semi-regular.

Proof. There cxists, for every n > 0, @,(., .)e [I(T,) which satisfies (1.3)
and (1.4), and we can always choose 7,(., .)e II(T,) in such a way that
7o(x, X) = 1 for all xe X. According to the assumption we have

N(A) = {xe X: my(x, A) 7 mo(x, A)} e N(T) for every 4 eS.

For every x e X we shall denote the system of all 4 € S for which =, (x, 4) —
— mo(x, A) by M;(x); let us write My(x) = § — M,(z). Since (1.3) and (1.4)
hold for =,(., .) with » > 0, m,(x, .) is a partial measure on M,(x) for every
ze X (in the sense of [4], def. 1.6 — see also [4], theorem 1.9 (II)). It follows
that my(x, .), as the limit of ,(x, .) on M,(x), is a partial measure on M,(x) also.
But then, for each x e X, there exists a finitely additive function A(z, .) on §
such that A(z, 4) = my(x, A) for every 4 e M,(z) (see [4], theorem 1.21), and
clearly A(x, X) = my(x, X) = 1. Further, we have N,(4) = {zxe X: Az, 4) +
+ 7y(x, 4)} ¢ N(A). From this it follows that A(., .) e II(T), and consequently
II(T,) is semiregular.
The following theorem is an easy consequence of 2.1.

2.2. Suppose there exists a countable basis for the o-algebra T, T c S. Then the
condittonal probability I1(T) is semi-regular.

1) The assumption (1.1) is somewhat less strict than that of [1], where measurability
with respect to the non-completed o-algebra is required; this weaker definition appears
essential for the validity of the theorems of the present paper.
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Proof. Let {E,, E,, ...} be the countable basis for T and set T, = o({E4, ...,
E,}). The conditional probabilities /1(T,) are semi-regular, and it is well known
that ZI(T,) converge almost surely to /1(T) (see [5], Chap. VIIL.§ 8). The semi-
regularity of II(T) now follows from 2.1. :

3. Regular conditional probabilities. There exists a well-known example
due to Dieudonné (see e. g. [6], sec. 48, ex. 4) of a conditional probability with
respect to a o-algebra with a countable basis which is not regular. According to
2.2, this conditional probability is semi-regular and so we have an example of
a semi-regular conditional probability which is not regular. The example shows
at the same time that the theorem 2.1 does not hold if the world ,,semi-regu-
lar*“ is replaced by ,,regular‘‘. In fact, the conditional probability in this example
is not regular, although it is — for the same reasons as in the proof of 2.1 —
a limit of regular probabilities.

All known theorems on regular probabilities involve assumptions of a topo-
logical character. We shall use similar assumptions, but — to be able to cover
several special cases — we shall formulate them in an abstract manner, without
supposing that X is a topological space.

A system C of subsets of X will be called a C-system, if the following four
conditions are satisfied.

Cl. geC.

C 2. C is finitely additive, i.e. C;e C (1 = 1, ..., n) implies Y C, ¢ C.

C 3. C is countably compact, i. e. if C;e C and rn\ C; + Q)i:flor all », then
3062 + 0. o

i=

C 4. For each n and arbitrary C;e C ( = 0,1, ..., n) such that A C; = 3
n i=1
there exist D;e C (1 = 1,...,n) suchthat C, =U D, C; n D; =0 (1 =1, ...,
i=1
R

Let C be a C-system and let us write
G, —{X—C: CeC}, G:{G}Gi: GreGy (i —1,2,..)}.
We then have .
G1. If GeG, CeC, then G n (X — (O)e@G. ‘
G2. If CeC,G,eGand C c GlGi, then there exists an n such that C c GlGi.

G 3. For every n it is true that if G, e G (1 = 1, 2, ..., n) and C e C are such
UD..
=1

i=

n

that C c U G,, then there exist D, e C such that D, c G,, C =
;=1

7=
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The probability measure =z on C will be called compact with respect to C, if
Cc S and #n(F) = sup =(C) for every K e S.

CcE, CeC
The following theorem will be useful in the sequel.

3.1. Let C be a C-system with X € C and let a monotone, finitely subadditive and
finitely additive set function A on C be given such that A(§) = 0. Then there exusts
a measure u on o(C) such that

w(X) = A(X), (3.1)
w(C) = AC) forall CeC, (3.2)
w(X — C) = AD) forall C,DeC,CnD=9. (3.3)

Proof. The proof will be sketched only, because 3.1 is an easy generalisation
of the known theorem on the extension of a content to a measure. Let G have
the same meaning as above and let us define

(@) = sup AC) (3.4)
CcG, CeC
for all G € G and u*(E) = inf 24(@) for all E c X. Clearly
E GG
p*(X) = A4(X) = AX), (3.5)
;L*(G) = ¥ for GeG, (3.6)
wHC) = A0) for CeC. (3.7)

Using G 2 and G 3 we can prove that x* is an outer measure by the same method
as in the proofs of theorems 1 and 2 of [6], section 53. G 1 then implies the
measurability with respect to u* of all sets from ¢(C) (see [6], section 56, proof of
theorems 4 and 5), and we may set u(Z) = p*(E) for all £ € ¢(C). The relations
(3.1) (3.3) follow from (3.4)—(3.7).

We can now prove the theorem on the regularity property.
3.2. Suppose that the following two assumptions hold for C C §,
C is a C-system , (3.8)
CnS=0({D: DcC, DeC}) forall CeC, (3.9)
and let the probability measure 7t be compact with respect to €. Then for an arbitrary

a-algebra T c S the conditional probability II(T) ts regular if and only f it is
semi-regular.

Note. (3.9) is always satisfied if § = ¢(C). Both (3.8) and (3.9) are satisfied
e. g. in the following two cases:

a) X is a Hausdorff space, C the system of all compact sets of X and § =
= ¢(C).

b) X is an arbitrary topological space, C the system of all countably compact
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sets which are representable in the form {x ¢ X: f(x) = 0} where f is a continuous
function on X and § = ¢(C).?)

All assumptions of the theorem (including the compactness of ) are satisfied
if X is a locally compact Hausdorff space, C the system of all compact sets
which are /5 and S the system of all Baire sets, i. e. § = ¢(C).

Proof of 3.2. It is sufficient to prove that semi-regularity implies regularity.
Suppose (1.3) and (1.4) hold for some 7,(., .) e [I(T). Since x is compact, there

0

exist C, e C such that C, c C,,; and n(Y C,) = 1. Let us write C, = {CeC:

n=1

:CcC,}, S, =0a(C,). For every n, xe X and CeC,, we define 1,(z, C) =
= my(x, C). Since 7,(., .) e II(T), Ay(., C) is T-measurable and

(T) [ A2, C) dr(x) = (B n O) forall CeC,, BeT. (3.10)

B

From the additivity of z,(x, .) on S it follows that, for every ze X, 4,(x, .)
satisfies all assumptions of the theorem 3.1 if we replace X and C by C, and C,
respectively. Cansequently there exists for every x ¢ X a measure u,(z, .) on S,

such that
L, C) = Au(x, C,), (3.11)

tn(x, C) = Ay(x, C) if CeC,, (3.12)
un(z, C, — C) = A (x, D) if C,De€C,, DcC,—C. (3.13)

From (3.10), (3.12) and (3.13) we deduce
(T)X[_'/An(x, C) dr(z) = (T)j{ln(x, C)dn(x).= =(C) forall CeC,, (3.15)

(T)f,un(x, c, — 0) dr(x) = (T) [ An(z, D) dn(z) = =(D) (3.14)
X X

forall C, De C,, D c C,, — C. Since x is compact, we have by (3.15)
(1) pal, C, — C)da(x) = sup (D) = n(C, — C). (3.16)
X

eC,DcC,—
Suppose that there exists a C' e C, for which strong inequality holds in (3.14).
Since u,(x, .)is additive, we have by (1.1), (3.14) and (3.16)

(M1, Co) d(z) Z (T) [y, ©) da(e) + (T) [an(w, O =€) dan(a) >
X

x
> a(C) + n(C,, — C) = a(C,) .
But this contradicts (3.10) and (3.11), and we have
() [ (e, Co) dafa) = (T) [ (e, €) (@)
for all C e C,. Hence we deduce by (3.12) that
{we X: py(x, C) £ Ay, C)} e N(T) forevery CeC,.

%) The example b) was communicated to the author by P. MANDL and this influenced
the final formulation of the assumptions C 1—C 4.
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This and (3.10) prove that u,(, C) is T-measurable and
(T)I];,u"(x, C) dn(z) = n(B n C)

for C e C,, Be T. Since u,(z, .)is a measure on §,, S, = o(C,) and C, is finitely
additive, we may prove by usual methods of measure theory that

tin(., A) is T-measurable for all Ae€S,, (3.17)
(T) [pin(, A) dn(x) = (A ~ B) forall AeS,, BeT. (3.18)
B

From (3.9) we have §, = C, n S, and we can consequently define (with
Co = (b)

/"(x’ A) = Z.ollun(x) An (On - On—l))

for all ze X, A €S. Clearly u(., A) is T-measurable, u(z, .) is a measure on S
and it follows by (3.18)

o)

(T)Bf,u(x, A) dn(x) = 3 (T)Bf,un(x, An (C, — C,_y) dn(z) =

n=1

—Sald aBa(C,—Cu) =24 0 BoUC,) =a(d n B)
n=1 n=1

for all AeS, BeT. Hence N = {ve X: u(x, X) & 1} e N(T) and if we set
a(x, A) = u(zx, A) for xnon ¢ N and n(x, A) = n(A) for xe N, we have
n(., .) e II(T) and =(z, .) is a probability measure for every x e X.

From 2.2 and 3.2 it follows that

3.3. If all the assumptions of 3.2 are satisfied and if the o-algebra T has a count-
able basus, then I1(T) is regular.

Added in proof (July 8. 1959): Using a pointwise convergence theorem
for martingales with a special index set we can prove that the assumption
of countable basis for T in the theorems 2.2 and 3.3 may be dropped. Some
details will be published in a short note in one of the subsequent issues of
this journal. The theorem on martingales mentioned above has been com-
municated to the author hy Prof. K. KRICKEBERG.
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Pesome
PEI'VJIAPHBIE YCJIIOBHBIE BEPOATHOCTU

MUJIOCIAB MPKNHA (Miloslav Jifina), IIpara
(ITocrynmiio B pegakunio 5/1X 1958 r.)

Ilns sagamsoro mosst BepositHocreit (X, S, @) w 3aganuoit o-anre6pst TC S
ob6osHaumm yepes T ¢-aire6py BceX 110MHO;KeCTB X, KOTOPHIE OTAMIAIOTCS OT
MHOKecTB U3 T Ha HEKOTOpOe IOJMHOMKECTBO 7-HYJIeBOIO MHO;KecTBa mu3 T.
Yenosuoit BepostrocThio [I(T) (oTHOCHTENIBHO o-anreOpsl T) Mbl GVEeM B 9TO
CTaThe Ha3BIBATH CHCTEMY BceX (QyHKumil (., .), oupejeneHusX Ha X X §,
T-M3MEPUMBIX OTHOCHTEILHO & 1 YIOBICTBOPHIONIMX YCIOBUIO [n(x, A) dn(x) =

B

= (A n B) nisi Bcex 4 € S u B e T. Ycuosnas BepostHocts [I(T) nassiBaercs
Oy peryiisipHoii, ecan cymecrsyer (., .) e II(T) raras, uro n(x, X) =1
I BceX & M 4TO 7r(%, .) KOHEYHO — aJUIMTMBHA HA S JJIsi BeeX X. ¥ CIOBHAs
BEPOSITHOCTDH HA3BIBACTCH PeryssipHoi, ecim cymecrByer 7(., .) e JI(T) rakas,
410 7(%, .) ABIAETCS BEPOATHOCTHON MepPOil HA § 1A Bcex X.

I'nmasusie pesyJibTaThl:

Teopema 2.2. FEcau o-aaeebpa T o6aadaem cuemmwvm 6asucom, no II(T)
scezda noaypeyiapHa.

Teopema 3.2. [lycmb cucmema nodmmoxncecme C C S guinoansem caedyoujue
Ycaoeus:
a) C nS=0({DeC:Dc (}) 0uanecakoeo C e C.
6) C s3amrHyma omHocumesbHo cMPOEHU KOHEUHBIL COeOUHEHU.
B) C cuemmno komnakmmwa, m. e. 0asx eécakoii nocaedosameavrocmu C;e C
n o)
makoii, umo ) C; & 0 (daxn écex n), umeem mecmo A C; == 0.
=0 i=0
r) fasa ecakoeo m u npouseoavnuix C;e C (i = 0,1, ..., n) marux, umo
n n
NC;,= 0, cywecmeyoom D;eC (i =1,...,n) marue, wumo Cy= U D;
i=1

=0

uD;nC;=0(=1,...,n).

1) Beposmmuocmy n romnarna ocrocymeavro C, m. e. n(E) sup w(C) Oan
CcE, CeC

eécex K € S.

Toz20a Oas wioboii o-aneeopur T C S ycaosmas eeposmuocmv II(T) peeyaapna
mozda u moavko mozda, koeda oHa NoAYpeyaIpHA.

Teopema 3.3. Ecau gunoansiomes 6ce ycaosus npeduidyueli meopemvl U ecau
T obradaem cuemuvim 6azucom, mo ycaoswas eepoamuocmdv II(T) peeyaapra.
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