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YexocaoBanknii MaTeMaTHIecknii :xypHai, t. 8 (83) 1958, Ilpara

UNICITY OF SOLUTIONS OF GENERALIZED DIFFERENTIAL
EQUATIONS

JAROSLAV KURZWEIL, Praha
(Received October 25, 1957)

This paper contains two unicity theorems concerning generalized
differential equations introduced in [1]. Theorem 1 gives a new criterion
for the unicity of solutions of classical differential equations at the same
time.

0. We shall use the notations of [1]. Let us say that the function y(5),
0 = 5 < o fulfils the condition (A) if y() = 0, 1;“1 p(n) is non-decreasing and

2 2’1/)( ) < 00. In this case we put ¥P(n) Z (%) e

1. Theorem 1. Let F(x, t) e F(G, w,, w,, 6) and let w(n) = w3(n) fulfil the con-
dition (A), Let us further suppose that x(t) = ¢ for v, = v = 7, is @ solution of
dx o
& = DF@ 0 (1)
and let vye (T, Toy. Then x(7) is the unique regular solution of (1) satisfying
xz(t,) = ¢.
Theorem 1 has the following precise meaning: Let y(7), v e (73, 7, be a re-
gular solution of (1), y(75) = ¢ for a 75 {7y, 75> n {75, 7,). Then y(7) = ¢ for
Te Ty, Ty N (T3 To).

Note 1. The solution y(7) is called regular, if there exists such a number
0y > 0 that |ly(7s) — y(76)]| = 20,(|t5 — 76|) for |75 — 76| = 04, 75, 76 € (T3, To)-
Definition 4, 2, 1 of [1] is obviously equivalent.

Note 2. Let ws(n) be a continuous increasing function, w4(0) = 0 and let
(1) = ws(n) wy(n) fulfil the condition (A). Let the solution y(7) of (1) fulfil the
inequality Il?/(fs) — y(7s I] = 204( |Ts - z'6| for |"75 - Te| = 0y, Ts To€ (T3 Ty)
where o, is positive. It follows from Lemma 4,1,1, [1] that y(7) is a regular
solution.

502



Note 3. The unicity of solutions of generalized linear differential equations
([1], section 5,1) is a consequence of Theorem 1.

Proof of Theorem 1. Let the interval {z,, 7,> n {73, 7,> be non-degenerate.
Let us find such a positive number o3 < 4o that

1 1
wy(03) < 1’ n¥(n) < — wz(")) for 0= = 20;?) (2)

and that (2, 7) € G for 7€ (73, 70, ||z — y(7)|| < 204(03).
Let us suppose that

ly(ve) — y(Ts)ll = 53 20476 — 75) 3)

holds for z;, 75€ {Ty — 03, Ty + 03> 0 {73, 7o) N (T3, T = {74, Ty, k natural.
Then

I1F @y +mn),7+n)— Fly(r +n), 1) — Fy(r), v + )+ Fy(2), 7)| = zkl_ 203(1)

for 7, T + 1€ (7;, 75y according to (3) and according to the properties of F(z, t)-

It follows from Theorem 3,1 of [1] (we use this Theorem for each component
separately) that

y(te) —y(z5) = [ DF(y(x), &) = F(y(zs), 7o) — Flu(rs), 1) + B (4)

where |B|| =n 2: 1 2|76 — 75 [P(76 — 5|), 75 Te€ (T2, Tg>. As (1) =c is
a solution of (1) it follows that
0=c—cCc= f‘DF(c, t) = F(c, 75) — F(c, 5)

and
1F(y(75), 6) — F(y(zs), v5)i| =
= [[F(y(s), T6) — F(y(7s), 75) — F(c, 7) + Fle, )| =
= ly(zs) — c|| ws(| 76 — 5|) = [ly(vs) — 3/ (To)l] 02|76 — 75) = (5)
= ér 2w,(a3) wz(lTB - 75[) = 9% wz(|76 Ts|)

according to (3) and (2). From (4), (5) and (2) we obtain
1
ly(e) =yl = g5 @all7a — 7)) + gy 2nlre — 7] Pallra — 7)) <
< o 207 — )

1) It is supposed that wa(7) = cn, ¢ > 0 (cf. [1], section 4); n is the dimension of the
space.
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As y(7) is a regular solution, (3) holds for £ = 1 and consequently for every
natural k. It follows that y(t) = ¢ for v € {(7;, 75» and the proof may be finished
without difficulties. "

Example. Let us examine the (classical) differential equation

dx
5 = f@ (6)
where x € £, and f(z, t) is defined in the following manner:

Let us choose a number 8, 3 < f < 1 and a sequence of numbers ¢, k =
=1,2,3,... Weput f(z,¢) = 0ifz =1lorz =0,

1 1\
f(ﬁ’t) == (E) cos (2¥t + @), k=1,2,3,...
If

l 1 1 1

we put

e (2) < e

and if x < 0, we define f(x, t) = f(—=, t).

f(, t) is obviously continuous. By means of Theorem 1 we shall prove that
x(t) = 0 is the unique solution of (6) satisfying z(t,) = 0. According to the
results of section 2, [1] it will do to prove that z(r) = 0 is the only solution of

& = DF@ | (7)
(where F(z,t) = 0ftf(ac,'r) dr) satisfying x(f,) == 0 .
We shall prove that F(xz,t)e F(E,, 7, 16nf,1). As |f(z,t)] =1 we have
|F(x,t 4+ n) — F(x, t)] = 7. Let us write F(x,t) = iFk(x, t) where Fy(z, t) = 0,
1 1\B+DE -
FA.(Q—]C , t) = (E) [Sin(2% + ¢,) — sin @], Fy(z, t) = 0

. 1 1 1 1
fex=—— or 25 5y kA 2 F(z, t) is linear in « on the intervals <%, —2-7‘> .

F_ (2, t) = Fi(—=x,t) for £=1,2,3,....
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Let us prove that
[F,,(xz, ty) — Fi(xy, t;) — Fy(y, t,) + Fi(ey, t1)i = 4[“’2 - x1| . ltz - tllﬁ . (8)

1 1

Let us suppose that £ > 0 and that z; = Sirio % = gi I jt,—t < 5

then
!Fk(xz, ty) — F(y, t,) — Fr(@y, 8) + Fy(zy, t1)| =

= |[Fu(@,, ) — Fi(@s, 1y)] = ()FD* [sin (245 + @) —sin (2%, + ¢4)| =

1 B 1 Br 1 1-8
= (”2‘) ly — t] = (Q) (Qi) [t — t,]f = 2w, — xl’ e — t)f

. 1
if |t, — 8| > 5 then
1 B+1)E 4 1 8
le(xz, ty) — F,:(xz, tl)l = 2(5) = o+ . (é}) < 4'“’2 - xli |t2 - tllﬂa

so that (8) holds in this case. Hence it follows without difficulties that (8) holds
for all z,, x,, t;, ¢, and all k. If we consider that for fixed z,, x, there exist at
most four indices % in such a way that |[Fy(xs, t)| + |Fr(%s )] & 0, we obtain
that

|F (2o ty) — F(2y, 1) — F(2, 8y) + Flzy, 8)] < 16]2y — 2] . [t — A
for arbitrary z,, @,, t,, £,.

We have proved that F(x,t)e F(H,, n, 1692, 1) c F(E,, 1658, 1655, 1). As
B > 1, vy(n) = 256927 fulfils the condition (A) and we may use Theorem 1.

2. In this section we shall prove other results concerning the unicity.2)

Theorem 2. Let F(z,t) e F(G, wy, wy, 6), let p(n) = w1(n) . wy(n) fulfil the
condition (A) and let for a positive A

. exp (A7~ w,(n))
lim P(n) ———2"2=0. 9
7—0 + () 77t wy(n) ©)
If (zy, t,) € G, then there is at most one regular solution x(T) of

dx
3 = PP 1) (10)

satisfying x(ty) = x,.

Proof. Let z(t), y(r) be regular solutions of (10) for 7 e (t,t, + > (or
Te{ty — C, boy) satisfying z(¢)) = y(f,) = x,, where 0 < { << min (0, 1) and

2) Corollary 2 and Theorem 3 are due to JAN MaRfx.
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(2(), 1) € &> (W(7), t) € G, if T {ty, ty + > and t € {o to + ). Let k be a natural
numl’)er, 0= & =2¢ Then

1 1+1 l l
x(to‘l'l/—;c——'—f)_y(t‘)%——%—é:):x(to +'k‘<§)—-y(t0—{—?§)+

1+1 1+1
vt tot——¢
l l
+ f DF(x(v), ) — f DF(y(z), t) = x(to +;£) - y(to +7af) +
l l
to+ 7€ tot 3§

l l 1 l l
+F(x(to+z‘f): to’*‘—_}l;‘f)—F(x(to’{*']Ef),t0+75§)-

l I+1 l l
__F(y(to’\—%é), to++T§)+F(y(t0+E§), tO+E§)+Tl—T2’

where [rll, [Irall = I% ¥ (%) . Hence

A ——)()\\\

<

o = o
oo 2T

As ¢ < A, the proof of Theorem 2 is finished by passing to the limit for & — oo
in (11).

Corollary 1. If wy(n) = Kn, K > 0 and if p(n) = w,(n) wy(n) satisfies the
condition (A), then the assumptions of Theorem 2 are fulfilled.

Corollary 2. Let K, K, be positive. Suppose that

0<a<l, >0 (12)
or

x=1, 0<e<sl. (13)
Let

wy(n) = Ky exp {—eflogy|=}, wyn) = Kpllogn|=.
Then the assumptions of Theorem 2 are fulfilled.

Corollary 2 is a consequence of the following lemmas:
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Lemma 1. If ¢(n), 0 = n = 0 is non-decreasing, then .Z 2"1/1(%) < o0 if and

1
i=1

only if f t-2p(t) dt < - If of t™2%p(t) dt < oo, then
n 2
2[t72p(t) dt = P(n) = [t72p(t) de .
0 0

Lemma 2. Let w(n) = @1(n) @2(n) (01(n) and w4(n) are defined in Corollary 2).

1fo<z<{:2, then

. i {)”77‘1(02(71)} _
Jim ) S =0 08

Proof. Let us put ¢(n) = (—logn)*, & = AK,. As
© & !
Y = — — (— 10 =1l —  — 1__;
¢'(n) p (— log ) ; () =,

1
and as g(n)* < exp {(¢ — &) (1)} (for 7 small enough), we obtain
n2p(n) = K Ko () exp (— ep(n)) <

< Kgiply)  #exp (—eapn) = — K'(n) exp (— eyp(n)) =
= Kj(exp {—&190(n)})’,
of t=2p(t) dt =< K;exp {—e; ¢(n)}.

As exp {7t wy(n)} = exp {& @(n)}, (14) holds according to Lemma 1.

Note 4. Lemma 2 holds, if « and ¢ are positive. Inequality (12) or (13) en-
sures that w;(n) =cn (c>0,0=7=1).
The following theorem shows that (9) cannot hold if

lim e,(n)[7 [log 7] = o .
7—0+

Theorem 3. Let w,(n) = n|log n| u(n), u(n) = ¢, > 0. Let (9) hold for a posi-
tive A. Then u(n) is bounded.

Proof. We suppose that w,(n) = ¢, ¢ > 0. According to Lemma 1
n n

2 2
Y(n) = f {2(t) dt = ccy f (— logt)dt = cclg(l + |log gl) > ¢, [log 7|
0 0 )

(for 5 small enough). From (9) it follows that

exp {Allog y| u(n)}
[log | u(n)

tends to zero with n — 0 4. Consequently #(7) is bounded.

n|log 7 = exp {Alog 7| u(n) + log n — log u(n)}
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Peswome

OQHO3HAYHOCTDb PENIEHUN OBOBIEHHBIX
JUOOEPEHIIMAJBHBIX YPABHEHUN

APOCJIAB KYPIBENJIb (Jaroslav Kurzweil), Ilpara
(ITocrynmito B pegaknuio 25/X 1957 r.)

Msr mosp3yemes onpeaeleHNsAME n 0003HaYeHUsAME, BBeJleHHBIME B [1]. Mu
roopuM, uto ¢yErmuA (), 0 =< 5 < o ynosuerBopsieT yciosmio (A), ecam
7~ p(n) He yGmiBaer, y(n) = 0, 22"1/)(%) < 0. B rakom ciydae mosiokum

- o i=1
Y(n) = Zy)(-;];) T JloxasmsBalorcsa cilefyoniue IiIaBHBE Pe3yJbTATHL
i=1

Teopema 1. ITycmov F(z, t) € F(Q, w,, w,, 6) u nycmv Pynrgus p(n) = ws(n)
yoosaemeopaem ycaosuio (A). Iycmv 2(T) == ¢ Oag 7, = v < 7, A64semca pe-
WeHUEM YPABHEHUS

dx '
o= DF(x, t) (D

u nycmdv Ty € {7y, Top. T020a x(7) A6asemcs eOUHCMEEHHIIM PECYAAPHBLM DPeule-
nuem ypasuenus (1), euinoanaouunm Havasvroe ycaosue x(t,) = .

ITorasaHo, Kak 9Ta TeopeMa HMCIOJB3YeTCA HpH pemeHnu AAPdepenmaIs-
HOTO ypaBHEHH:A IIEePBOro MOPSANKA (B KIACCHIECKOM CMEICTIE).

Teopema 2. IIycmv F(z, t) e F(Q, w,, wy, o), nycmbv @ynryus w(n) =
= w,(n) wy(n) ydosaemsopsem ycaosurw (A) u nycmv dasn Hekomopozo nosoHcu-
meavHo20 A '

. exp (A~ wy(n)) _ .
Yo Sy O ©

moeda kancdoe pewierlie YpasHenus

. _
d_f - DF(x? ) (10)

00H03HAUHO onpeae/memcu HAYAADHOIM YCA0BUECM.
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Teopema 2 0coGeHHO IOJIe3HA B CIEAYIOMUX ABYX CIIydasx:

L. wy(n) = cn, ¢ > 0, p(n) = w,(n) wy(n) yroBIeTBOpseT yciosuio (A),

2. wy(n) = K, exp {— ¢ [log =}, @y(n) = K,y [log n*, rne K, > 0, K, > 0,
a Yyucaa g, x yI[OB.TIeTBOpHIOT yCJIOBl?IHM

O<a<<l, >0

(12)
I
Haxonen, nokassiBaercs, 4to (9) He MOKeT HMeTh MeCTa, eciu
wy(n) = 7 [log n| pe(n) , v
e u(n) = ¢, > 0, lim sup u(n) = oo.

70+
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