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A PROPERTY OF J-DIVERGENCES OF MARGINAL PROBABILITY
DISTRIBUTIONS

JAROSLAV HAJEK, Praha
(Received August 2, 1957)

It is proved that the J-divergence of any two probability distributi-
ons of any stochastic process equals the supremum of J-divergences of
finite-dimensional marginal distributions. If this supremum is finite then
the distributions are absolutely continuous with respect to each other.

Let us have two arbitrary probability distributions, P nad ¢, on a Borel
field & of subsets A of a space 2 = {w}. Let P, and Qa, a € 4, be corresponding
“marginal’ distributions on Borel sub-fields &, c &, defined by P,(4) = P(A)
and Q,(A4) = @A) for A e F,, a e A. '

Definition.1) J-divergence J, between distributions P and @ on the Borel field
F , C F 18 the number

J, —f(p“— )loaq dQ if P,=@Q,, 1)
-and
Ja:OO: if PaEEQa: - (2)

a

where P, = @, denotes that [Q(A) = 0] <> [P(A) = 0] for A e F,, and % =
= é—dgi’ 1s the likelihood ratio (Radon-Nikodym’s derivative) of P, w. r. t. Q,,

1. e. such a function of w that

P(A) = f(())dQ AeZ,. (3)

Divergence J, is symmetrical in P and ¢ and possesses certain valuable
properties. It may be easily shown, that J, = 0, where the sign of equality

holds if and only if P, = @,. Furthermore, &, C %, implies J, < J,, where

1) Sze [2], page 158, and [3]. Our definition is that of [3] extended to the case when
P,%=Q,
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the sign of equality holds if and only if either J, = oo or Lo _ —? [P]; in the
b

a

latter case F, is a sufficient Borel field for distinguishing between P, and @,.2)

Theorem 1. Let J, < J, < ... = J , be a sequence of J-divergences (see definition)
between distributions P and @ on the Borel fields F#, c F,C ... ¢ F,, where F

1s the smallest Borel field containing U & ,. Then
1

J,=lmJ,. (4)

n— oo

If lim J, < oo, then P, = Q.

Nn—>x0

Proof. If lim J,, = oo, then (4) follows from J, < J_, n = 1. Hence we may

Nn—>00
restrict ourselves to the case when

limJ, < . (5)
First let us prove that (5) implies P_, = . We shall suppose that P == @ and
deduce a contradiction. If, for example, P <@, does not hold, then there
exists an event A € #  such that P_(4) = ¢ > 0 and @ (A4) = 0. Consequently
(P. R. Harmos, Exercise 8, § 13), to each k¥ = 1 we may choose n;, = 1 such
that there exists an event A, in &, satisfying the inequalities

3 £ &
18 <P, Q) < yp—5- ?

. Bearing (6) in mind and denoting

A;:Akn{w:&”Zk} (7

‘we may write

e oy [P Nao— [ [P
° < Py Q(Ak)—f(q l)dQ f(q 1)d@+

nk nk
k

4 f(gﬂ_l)dQéf(—qPﬂ-—l)dQ—}—(k—l)Q(Ak_Alf)é

pnk 2
< | (B=—1)aQ +=%,
< [l o

2) It may be shown, however, that J-divergence does not possess the triangle property
of a metric: Let us consider three normal distributions on the real line having variances
02 = 0.1, 0,2 =1, 0,2 = 2 and mean values u, = pu, = u; = 0. The J-divergence of

2
any two of them turns out to be J;;, = :7’—2 EL? — 1), 1=4+k<3, from which we
k i

got Jyp = 8.1, Jyy = 18.05, Jyy = 0.5, i. e. Jyp + Ty < Jog
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p’ﬂk__ f_
f(é—; l)sz4. (8)

Ag*

From (7) and (8) it follows that

Pri ) P f(pmc ) Prx
I = — 11g£2dQ = | (2 —1)1g=2dQ =
' f ( & o ¢ AT € e

;gkf(ﬁ— )dQ> gk, k=12, ...
ng
"k

This last inequality contradicts the supposition (5) and thereby proves P, = @ .

Now, from P, = @, it follows that there exists ?ﬁ and

= [ e

Moreover, 7;" - M{gf \ ff} which implies (J. L. Doos, Theorem 4.3, Ch. VII)
that ’
Te=limir. Q] (9)
By means of (9) and using Fatou’s lemma we get from (1) that
lim J, = (%_ 1)1g§fdQ=Jw. (10)
Inequality (10) combined with the obvious opposite inequality, lim J, < J_,
gives (4). The theorem is thus proved.3)
The following version of Theorem 1 is useful for stochastic processes.
Theorem 2. Let {x,, t € T} be an arbitrary system of random variables. Let J

be the J-divergence between distributions P and @ on the Borel field & generated
by a sub-system {x,, K c T}. Then

Jp =sup Jg, (11)
Ky
where A" s the class of all finite subsets of T'. If sup Jx << o0, then Py = Q.
Key®
%) We may write J, = — H,(P, Q) — H,(Q, P), where H,(P, Q) = — f%lg%d@

is the entropie of P w.r.t. Q on &,, P, < Q,, (see [5]). The corresponding thgoren;‘ for
entropies, namely that (i) H,(P, Q) — Hwo (P, Q) and (ii) lim H,(P, @) >— 0 2> Po <Qw,
could be proved without any essential change in our method.
A related but conmdera,bly weaker result is contained in [5], theorem 7, part (ii), where
2(Ps Q) > Hwo (P, Q) is proved under supposition that lim H,(P,Q)> — o and Puw < Qw;

Nn—>»00

the supposition Po < Qw, being implied by lim H (P, @) > — 0, is superfluous.
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Proof. If T is countable, then it is possible to choose finite subsets K, c

c K, c ... such that # is the smallest Borel field containing U F,, and the
theorem is reduced to theorem 1. n=1

If T fails to be countable, it may be easily shown, that J; = Jg for some
countable subset S c 7: When Py == @, then Pg == @ for at least one countable

8cT, so that J;= Jg = o0. When P; = @, then there exists Pr which is
T
measurable with respect to & ;. However, we know, that every function measur-

able w. r. t. #, is measurable w. r. t. # for at least one countable S c 7, so that

Pr_ ﬁs’ which implies J; = Jg.
qr s
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Peswome

OB OJHOM CBONCTBE J-OTJMNYNIT MAPTMHAJIbHBIX
PACITPEIEJIEHUIT BEPOATHOCTEN

fIPOCJIAB TAEK (Jaroslav Hajek), IIpara
(Moctynmito B pemakxnmio 2/VIII 1957 r.)

HoxrasniBaercs, 4ro J-oTimdwme ABYX OPOM3BOJIBHBIX pACIpeeseHHHA Bepo-
ATHOCTEH JTI060T0 CTOXACTHIECKOTO IIPOIecca PaBHO BepXHel rpaHm J-0TiImauit
KOHEYHO-MEPHHIX MapTrHHAIBHBEIX pacupepeiieHuil. Ecim 3ta BepXHAsS IpaHb
KOHEeYHa, TO pachpeflelleHns abCOJIOTHO HEMPEePHBHEL ONHO IO OTHOLIEHMIO
K Apyromy.

J-ornmuune J, mexny pacupenesnerusamu P u @ Ha GopeneBcKoM 1ose £, C F
ABIIAETCSA YUCIIOM, OIpeJleIeHHBIM CIeTyIONuM 06pasom:

Ja:f(%_l)]g%dQ, ecan PaEQa>Ja:co! ecyIn Pa$Qay
rae P, = @, osmauaer, uro [Q(A) = 0] <> [P(A) = 0] mna Bcex coGwITHit
ANeF, a=t Pa oerp orrOmeHMe npaspononodua (mpomssogaasi Pagon-Huxo-

a

numa) P mo @ orHocuTensHO GOpeseBCKOro moiisi &, C £.
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