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YexocaoBankuii MaTeMaTuiecknii :xypuai, . 8 (83) 1958, IIpara

GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

JAROSLAV KURZWEIL, Praha
(Received February 17, 1958)

The existence and continuous dependence on a parameter theorems
are proved for a special class of generalized differential equations defined
in [1]; their solutions have bounded variation. Results on the continuous
dependence on a parameter are then applied to classical differential
equations with a disturbing term which approximates the Dirac
function. )

Introduection

Generalized differential equations were defined in [1], § 2 (of this paper we
use § 1 and sections 1 and 2 of § 2). First we prove an existence theorem (th.2.1)
for another class of generalized differential equations, viz.

dx

where F(z, t) satisfies
IF (@, ;) — Flz, )] = [A(ts) — k(t)] (0,2)
IF (@3, t5) — F (s, t,) — F(@y, t5) + Flxy, 1)l = oz, — 2,)) [lt,) — A(E,)] (0,3)

with h(t) increasing, continuous from the left, and w(n) increasing, continuous
and o(0) = 0.

The solution whose existence is demonstrated has bounded variation and
is continuous from the left. Theorem 2,1 differs from customary existence
theorems for differential equations in that the existence domain for a solution
z(7) satisfying given initial conditions z(f,) = x, is an interval {, = v < ¢, + ¢
(£ > 0) — it need not exist for 7 < ¢,. This is a consequence of assuming h(t)
to be merely continuous from the left: if A(¢) is continuous, we obtain this
solution z(7) on a neighbourhood of ¢,.

The study of these generalized equations was suggested by the following
problem: Take a sequence of classical differential equations

d
d_f =a o), tel(—T,T> (0.4)

360



with
t
@ut) =0, lim [gy(r)dr=0o0rlas —7T =t<0or 0<t="1T resp. (0,5)
k—sw -T

Let z,(t) be a solution of (0,4) with x,(—7') = 1. Then obviously x,(t) — x(f)
for ¢ & 0, where

ettt for —T<t<0,

x(t) = { T t

(" + Defor 0<t=T.
The problem is to examine such situations in a more general setting; i. e., to
define a class of generalized differential equations such that the function z(f)
would appear as a solution of some such equation, and that z(t) — z(¢) would
be a consequence of a theorem on the continuous dependence on a parameter.

If f(z, t) satisfies the Carathéodory conditions, viz.
If(x, Ol = m(t) (0,6)

with m(f) integrable and

f(z, t) with fixed ¢ is a continuous function in  , 0,7)

then every (absolutely continuous) solution of
dx

is a solution of (0,1) and conversely, provided that
t
Flz,0) = [f@,7)dv. (0,9
0

The proof is quite similar to that for the case of continuous f(z, t), cf. [1],
2,2.
Our theorem 2,1 contains the Carathéodory existence theorem as a special

t
case; if we put h(f) = [m(z) dz, then (0,6), (0,7), and (0,9) imply (0,2), but
0
(0,3) need not be fulfilled for any w(zn). Nevertheless it can be proved, that
i
there always exist such functions w(z), k(f) (h(f) different from [m(r)dr),
0

that (0,2) and (0,3) are fulfilled (using the F(x, ¢) of (0,9)), provided that
f(z,t) is defined and fulfils (0,6) and (0,7) on Kz {—7,T>, where K is com-
pact.

In § 3 we give a unicity theorem for the case w(n) = K#; the proof is an analogue
of the classical case, using the notion of distance of two solutions.

In § 4, Theorem 4,2 treats a general case of the continuous dependence on
a parameter. Our assumptions become rather complex; the main source of
difficulties is that '

i) the classical equation (0,4) is equivalent to the generalized equation

t

& — Dlet + [qu(x) de]; (0,10)
-T

361



t
however, taking Fy(x,t) = at + [¢i(r)dz for k = 1,2, ..., there obviously
-T

exists no function %(f) to satisfy (0,2) with F(z,t) = Fi(2, 1), k=1,2,..;

ii) the convergence effect in equation (0,4) apparently depends on the beha-
viour of the right hand sides of these equations only in a (suitably defined)
neighbourhood of the discontinuous limit solution x(¢).

In § 5, Theorem 4,2 is applied to the convergence effect of

& fw )+ 90) 20 0.11)

with f(z, t) , g(x) continuous, ¢,(¢) satisfying (0,5) (or more general conditions)
and assuming some unicity conditions in (0.11).

Similar questions are treated in the author’s paper [2]; the results of §§ 1—2
of this paper are contained in [2], but the results on the continuous dependence
on a parameter are more general and complete here.

1. The Existence of [ DF(z, (7), £)

01

We make the following assumptions: 7' is a positive number; &,(t), h,(f)
are functions on the closed interval (—7', T"), and are increasing, bounded
and continuous from the left; w(xn) is continuous and increasing for = 0,
o(0) = 0. G is an open set in the product space B, X (—T1,T) (&, is the
Euclidean n-space).

F = F(&, 1,(t), w(n))

denotes the set of all functions F(z, t) on G with values in E, such that

IF (@, ts) — F(w, £)| = [hy(ts) — hy(t))] (L1)
for all (z,¢,), (z,t,) € G, and
F (g, by) — F(wg, £)) — F (), 85) + Flay, 1)l = [hy(ts) — by(8)] - olles — ) (1,2)

for all (z,, 1)), (x), ta), (%3, ), (X2, t2) € G-
Let z(7) be a function defined for 7 € {o,, 6,) c {(—T, T"y with values in £,
and such that (2(7), 7) € @ if 7 € {0}, 0,y and

2(7s) — (7))l = [ha(Ta) — hs(7))]
if 7,, 75 € {0}, 0.
For £> 0 let N = N(&, 0,, 05, hy, ®) be the set of all ¢e{o,, 0,) with
w(hy(6+) — hy(t)) = &. Here, of course, hy(f-+) means lim k(7).

>+
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Finally, let A= A~(§, G,, G, hy, @) denote the set of all the decompositions
{&o, Ty %y, -5 T &4 Of the interval (o), 6,) with the following properties:

O, =0 =T, S = ST, S0 =, 0y < 0y <l < X,

if 7; is not an element of N, then w(hy(x;) — hy(x;_,)) < &, if 7; is an element
of N, then w(hy(z;) — ha(0; ) < & (ka(n;) — ho(ty+)) < & and ;> 1,0

Lemma 1,1. 4 is non-empty.
Proof. If 7 non € N, then choose a §(t) > 0 such that

o(hy(t + 6(7)) — ho(z — 6(7))) < &

(if o, < 7 < 045 ©(ha(02) — hy(0p — 9(0,)) < & 0T w(hy(o, + 0(0,)) — hy(0y)) < &
in the remaining cases), and

—0(r), 7+ 0()n N=g .
If 7 € N, then choose a d(7) > 0 such that
w(hy(t + (7)) — ho(v+)) < &, a(hy(r) — hy(v — 8(2))) < &,
(t—0(1),7) nN= g =N n (7, 7+ 6(z))
for v > 0,). Let S be the set of pairs (z, t) with
0 <t1=0,, ,St<0,, 1— 1) =t=<7+ ).
Using Lemma 1,1,1 in [1], there exists a decomposition {oco,~ Tyy Xpy «ney Tgy g}

subordinate to S, which is easily shown to be an element of 4.

Theorem 1,1. The integral [ DF(x(z), t) exists. If {xg, Ty, 0ty .., Ty &5} € 4,

then
l|f2DF(x(T)’ £) _“.ZIAi“ = En[kl(a2) + hy(o,) — hl(gl) - hZ(GI)]

with A; = F(x(7;), «;) — F(2(7;), o;_,) for 7,non e N and
4; = F(x(t;+), ;) — Flz(r,+), T+) + F(x(zy), v;+) — F(x(7;), xi—q)
for T, e N.

Proof. Let {xg, 7), oy, ..., 7y &} € A and let [F(z, )], [4,]; be the j-th
coordinates of the vectors F(x,t), 4, (j = 1, 2, ..., n). Define functions M,(7),
m;(7) thus: My(o,) = 0;if o, < 7 =< &, 7mon e N or o,y << 7 < 73, 7€ IV,
then

k-1

My(z) = »Zl [4.1; + [F(2(zy), 7) — F(2(t), o)) +
+ § . (hl(T) + hZ(t) - hl(O'l) - h2(0'1)) 5
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if 7, < 7 < «;, 7, € N, then
k-1

Mi(z) = z [4,); + [F(x(t), 17t) — F(x(7y), (qu)]i +

i=1

+ [F(@(ret), 1) — F((ret), e+)l + & (hy(7) + hy(v) — k(o)) — hy(a)),
k=1,2,...,s,
m;(t) = M;(v) — 2&(hy(7) + ho(7) — Ry(0,) — hy(0)) -

We will show that M ;(z) is a major function to [F(z(t), £)];-

Let ¢y € {0,, 05>, tynon e N, t, < 0,, and let k be the index with o, _; = ¢, < oy
Then for ¢ = ¢, sufficiently near ¢, (more precisely, for {, <t < «;if 7, non e ¥
ort,eN, 7, <ty and forty <t < 7, if 1, e N, 7, > ¢,), we have
M) — My(t) = & (y(t) + Bal) — Plly) — halts)) + [F(z ) — Flz, to)l» (1,3)
where z = z(t;) if ,noneN or 7,e N, t, < 73, and z = (7, +) if 7, €N,
T < o

Since {«g, Ty, ¥y, ves Ty Nof € At, in every case

o(llz — 2(t)l) <&, (L,4)
[[F (=, t) — F(z, t) — Fa(to), 1) + F(x(ty), to)1;| =
= (h(0) — hy(t)) - w(llz — 2(t)l)) = E(Ry () — Ry (ko)) - (1,5)
Then (1,3) and (1,5) imply '
M) — M) — [Fa(t), 1) — Flalty), )], = 0 (1,6)

(with ¢, € <{0,, 05>, tynon € N, and ¢ sufficiently near ¢,).

Let ty € (0, 05y, and let & be the index with «,_, < ¢, < «;. Then for ¢ < ¢,
sufficiently near #, (more precisely, for o;_, <t <, if 7, none N or 7, ¢ N,
by = 7, and for 7, <t <y if 1, e N, 7, < ty) we have (1,3), (1,4) and (1,5)
again with the same z, so that :

M(e) — M (1)) — [Plata), 1) — Plalty,) )], = 0 - (1,7)

The remaining case is f, = 7, e N, t > ¢,. If { < oy, then

Ma‘(t) — Mj(to) = E(hl(t) =+ hz(t) - hl(to) - hz(to)) +
+ P, 5ek) — Fle(m), 1) + Pa(m), ) — P, nh)l
. hy(t) — ho(ty) = A, where w(l) = &,

M(t) — My(to) — [F(x(to), 1) — F(@(t); to)]; = &4 — } (1,8)
— [[F(@(tet), 1) — F@(ret), mt) — Flalto), £) + F((ko), ty+)L| = 0 ’
for ¢ sufficiently near #,, since
[[F@(tit), ) — F(ret), mt) — Fa(to), £) + Fla(to), to);] =
= o(z(n+) — 2(to)ll) - (R (t) — 2y(te+)) -
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From (1,6), (1,8) and (1,7) it follows that M,(r) is a major function to
[F(x(7), £)]; for j = 1,2, ..., n; similarly, m;(z) is a minor function. Since &

has been arbitrary, the integral [ 2DF(::;(T), t) exists; finally, the inequality

in the statement of our theorem is a simple consequence of the fact that M ()
and m;(7) are respectively major and minor functions to [F(x, ¢)];,7 = 1,2, ...,n.

2. The Existence Theorem for (3% = DF(x, t)

Lemma 2,1. Let F(x, t) be defined on G and satisfy
|F (@, t,) — F(x, b)) = |k(ts) — A(t)]
for (z,t,), (z,t,) € G. Let y(z) be a function on {t,, ,> with (y(z), T) ¢ G when
T € {Ty, Toy; let f‘DF(y(t), t) exist. Then

T3

1f DF (), )] < h(zg) — h(x) .

Proof. Using Theorem 1,2,1 of [1], to every & > 0 there is a decomposition
{ogs Tyy Xy, - .5 T, g} Of the interval (75, 7,> such that

I DF(@(). ) — 3 Pyl ) — Flu(ed, sl < &,
so that '

II}‘DF(?/(T), Ol = ;IIF(y(n), &) — Fy(v), i)l + & = b(za) — b(75) + &

since ¢ is arbitrary, this implies our lemma.
If 2(7) is a function on (7, 7,), which is a solution of

g—‘f = DF(x,t) (2,1)
in the sense of definition 2,1,1 in [1], then lemma 2,1 implies
l2(7s) — 2(Ta)l| = [P(Ts) — (75)]
for all 73, 74 € {7, T,». Thus z(7) has finite variation and is continuous from
the left. Theorem 1,3,6 of [1] yields
a(v+) — a(1) = Fla(x), v+) — Fa(1), 7) (2,2)
for every 7 e (7}, 7,).

For the existence theorem, we assume that Gris the set of all (x, t) ¢ G with
(@ + F(x,t + ) — F(x,t),t) e . Choose a point (x,,%,) € @z Also choose
a ¢ > 0 such that (x, 7) e Gy whenever {, < v <, + o, |z — || < b(z) —
— h(ty+), ®, = %o + F(x,, ty+) — F(w,, ) (such o exists).
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Theorem 2,1. Let F(z,t) € F(G, b, w). Then there exisis a solution x(z) of the
differential equation (2,1), defined on {z,, 7o + o) and such that x(t,) = x,.

Note 2,1. If (z(¢y + o), {, + o) also belongs to Gy, we can apply Theorem
2,1 again, thus continuing the solution to the right; in complete analogy with
classical theorems, to every solution z(t) of equation (2,1) defined on (%, ¢,>
there exists a solution y(7) defined on (t,, t,) o {¢,, t,) such that they coincide
on the smaller interval and that the point (y(t,—), t,) does not belong to Gy.

As the following example shows, a completely different situation arises on
continuing the solution to the left.

Let n» = 1 (so that z is a real number) and set
Flx,t) =a for [z <1, —1 <t <0, Fx,t)=0for || <1, 0<t<1.
‘Obviously
F(z, t) € F(G, h(t), n)
with @ the set of points (z,¢): [¢] < 1, [{| < 1, and A(t) = 0 for —1 < ¢ < 0,
h(t) = 1 for 0 < ¢t < 1. Obviously Gy = G. The solution of

dx
i = DF(x,t) (*)

that passes through (z,, ;) € G with ¢, < 0 is easily shown to be (),
z(t) =2y if -1 <70, 2(z)=0if 0< < 1.
‘The solution z(7) of (*) passing through (%) e G with {, > 0, z, % 0 is
2(r) =, for 0<T<1,
and cannot be continued to 7 < 0.

Note 2,2. If the function A(t) is continuous, theorem 2,1 implies the existence
of a solution z(7) of (2,1) passing through a given point, z(t,) = z,, and defined
on an interval {t, — o,,t, + ¢)> with ¢, > 0.

Proof of Theorem 2,1. Fori=1, 2,3, ... and 7 e {t, {, + o) define func-
tions x;(n) thus:

o

n
z,(n) = 2, —}—fDF(xo,t) for t0§n§t0+7,
tﬂ

xi(n)zxi(t0+j—i 10) + fDF(z,-(r—%),t)

-1
to+ Tu

for

t0+71‘ 0<n§t0+%6) 7:2:3"",1"

366



n
Lemma 2,1 and [ DF(z,, t) = F(z,, ) — F(x,, t,) imply that
t,

lwi(ts) — Ty — F(y, bo+) + F(xo, L)l = A(75) — B(70+),
T, To€ptg+ 0>, T3ellp,tp+0>, 1=1,2,3,....

The functions x,(7) obviously satisfy

les(72) — (7))l = lh(Tz) - h(rl)l ’
J (2,3)

Ts

z,(t5) — w,(7y) :fDF (xi (T - %): t) s W=t S5t 40 (24)

(x,-(t) = &, for £, — i =t to) . It is a matter of routine to show that the
1
sequence z,(7) contains a uniformly convergent subsequence r;(7) = y;(v); set

2(t) = lim y;(v) for 7elt,t, + o).

j—o

From (2,3) we have (z(7), 7) € @ for v e (4, t, + o). We shall prove that

f DF (y, (1: — _) ) f DF(z, (z), ) (2,6)

forj > o0, <1, S 1558+ 0.
Choose a £ > 0 and

’ < ’
{X0, T0, Xps ooy Toy g} € A&, Ty Ts By 0), T <o, K=1,2,...,8

From Theorem 1,1 we have

H f DF(z(z), t) — Z 4,

where 4, = F(x(t7), o) — F(2(13), op—y) if 7 non e N(&, 74, 75, b, ) and
= F(2(7), te+) — F@(t2), oxmy) + F@(1t), ) — Fla(tit), tet)
if 7. € N(&, 74, 75, b, ®). For sufficiently large j

< ¢ 2n[h(z;) — h(zy)] (27)

, ~ g
{O‘Os T]’. +@£; Ky oeey T +'§:"‘s}€A(§: Ty 15,h(t - _-")a (l)) y -

) ) (2]

and by theorem 1,1

|[orlole=) -3

= & 2n[h(75) — (7,)] (2,8)
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with  AF = F(y,(n), o) — F(y,(v7), o)) if tymoneN (& 7, 75 b, @) and
e ) — Fo m +
+ F(%‘(T;c‘i‘)> LY7<.) - F(?/;(T;;—H;(T;’c + ;0;) +)
if 77, € N(&, 14, T5, b, ). Since

Il Z — A= sup ((e) — yi(o)l| - (ko 4 0) — (ko)) + &

tySTtst,+0

holds for sufflClently large j, (2,7) and (2,8) imply

[foren- ool )4

=[ sup (o) — yi(2)ll + £ dn] . [Alto + o) — h(to)] + &

t,STst,+ o

for large j; thus we obtain (2,6). From (2,4), (2,5) and (2,6)

#(ts) — a(ry) = [ DF(a(x), 1), w(to) = 2

T

and ‘.according to Definition 2,1,1 of [1] () is the solution of equation (2,1).

3. The Distance of Two Solutions When a Lipschitz Condition I's Fulfilled

Taking w(n) = Kz with K a positive constant, we give an estimate whose-
special case is the so called fundamental inequality for classical equations

@ _ f(z, t) (here f(x,t) is continuous in (z, t), satisfies a Lipschitz condition

for the variable z; cf. [3], ch. I, § 2 p- 21 or [4], ch. IV, § 17, Theorem 5).
Since our aim is an estimate, it seems worth while to have finer assumptions.

(h;(t), G retain their meaning, K is a positive constant.) )
Let F(z,t), F\(x,t) , Fy, t) be functions on @ with values in E,, such that

CF (@, t) — P, 4)]| < [by(t) — k()] for (z,ty), (,8) e @,

[ (2o, 82) — F(2y, 8,) — F(, ty) + F(x, t)| = Kllwg — ]| . |ho(ts) — h2(tl)l (3,1)

- for (24, t,), (@15 t)s (g, 1), (%3, 85) € G and

HFl(x, t) — 1(55': 8 = ] 3(ty) — }”3(t1)l7 [ o(, ) — Fy(x, t))]| = lha(tz) - hs(t1)|5~

whenever (z,¢,), (z,1,) € G. Finally, let 2(z) be a function on (¢, ¢,> which

satisfies the differential equation

g;v — D[F(x, t) + Fy(x, 1)], (32)
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and y(7) a function on {f,, t,> which satisfies
g% = D[F(y, 1) + Fy(y, 1)]. (3,3)
We shall prove that the following inequality holds:
ll2(&) — y(é)ll = {'x(t ) — Y@l - exp {K[hg(£) — hy(t))]} +
+2 f exp {K [hy(&) — ho(x)]} dhy() . (3.4)

Note 3,1. If »(t) is a real-valued function, we write f u(7) dv(7) instead

31

of ngu(r) v(t) (see also Note 1,2,1in [1]).

Note 3,2. Let us examine (3,4) in the classical case. If z(t), y(f) are solutions
of

S — f ) + (o ) (3.2)

LR (3.3)

respectively on <t,,¢,> c (0, T'), with f, f,, f, continuous on the region
G=El] <ec,0<t<T],
z,¢
and such that

If@ Ol <e, [fol@, O <& (@, ) — (@ DIl = Lllw, — |,
put, as usual,

F(z, t) = f fx, 7)d7, F,(z,t) = ftfl(x, 7)dr, Fyz,t) = [ fox, 7)dv.
T T 1‘
Then 3,4 can be applied with Khy(t) = Lt, hy(t) = &t, giving
&
l[2(&) — y(&)| = lJa(t) — y(t))| exp {L(§ — t)} + 2¢ feXP {L(& —n)}dy =

= |j2(t) — y(t,)|| exp {L(£ — t,)} + ® lexp {L(€ — t,)} — 1] <
= |le(t) — y(t,)|| exp {L(& — t)} + 28 (6 —t)exp L(§ —¢y) .
(3,4")

Here ||z]| can mean any norm in E,; e. g. taking [zl = max [z, (3,4') yields

i=12,...,n

the inequality mentioned above.

Inequality (3,4) will follow from a number of lemmas which we now proceed
to prove.
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Lemma 3,1. Let U(z, t) be a function with values in E, and such that [ DU (z,1)

Oy

exists (0, < a;). Also let V(z,t) be a real-valued function such that [ ’:DV('L', t)

Oy

exists and that to every 7 € {c,, ;) there is a §(t) > 0 with
Itl - T[ . ”U(Ta rl) - U(T: T)” é (Tl - T) . (V(T! Tl) - V(T7 T)) (375)

for 7, € oy, 03> 0 (¥ — 6(), 7 + 8(x)>. Then | DUz, 8)] < [ DV(x, ¢) -

Proof. From Theorem 1,2,1 and lemma 1,1,1 of [1] it follows that to any
& > 0 there is a decomposition {«,, 7, &y, ..., T,, &} of the interval (o, g5
such that o; — 7; < 6(7), 7; — s, < 6(7;) for ¢=1,2,...,s

IF DU — 3, [U(r0 ) — Utz el < e, (3,0)
DV ) — 3 (e 3 — Vizw i)l <. (37

Since ¢ is arbitrary, (3,5), (3,6) and (3,7) imply our lemma.
Lemma 3,2. If v(t) is real-valued non-decreasing, if u,(8), uy(t) are real-valued,
u,(t) < uy(t), and if the integrals f u,(7) do(7), f uy(7) do(7) exist (o, < 02),

Oy

then
[ () du(z) = [ a(2) do() .
The proof is similar to that of Lemma 3,1.
Lemma 3,3. If the function h(t) is real-valued, nom-decreasing, nmon-negative
and continuous from the left in {o,, 05>, then
[r@ane = 2 o) — i

fork=0,1,2,....

Proof. For every ¢> 0 hx+1(7) + eh(7) is a major function to

Tk+1

hk(‘t). h(t) (see Definition 1,1,1 in [1]), since our assumptions imply

1
(t_’)[k k+1

= (t — D)(A(t) — b)) =5 + : [Z RE=i(t) k() + €] = (¢ — 7)(h(t) — h(z)) h*(7)

- () — W+ \(T) + eh(t) — ak(t)]

for ¢ sufficiently near 7; this implies our lemma,
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Lemma 3,4. If the functions hy(t), hs(t) are real-valued, non-decreasing and
conttnuous from the left, then

& T &
f f dhy(zy) dhg(,) ... dho(rs) = f L Tha(®) — BT (o)

for ¢, <&1=0,1,2,....

Proof. The existence of the integrals of lemmas 3,4 and 3,3 follows from
theorem 1,1 and Lemma 2,1. Now, Lemma 3,4 holds if = 0; assume it holds
for I = k, an integer. Then, using Lemma 3,2

; ]!‘ﬂ ... fdhs(fo) dhy(7,) ... dhy(7y) dhy(Tyy) =
i & ':;+x
_ %’/‘ [hz(Tk-n) _ hz(T)]k dha(‘r) d]bz(’l«'kﬂ) .

1 1

Thus we must show that

& T &
k+1)[D [[kz(f) — hy(0)TF dhy(o) Ry(t) = tf[hz(f) — hy(2) ]+ dhy(7) . (3,8)

t

For this inequality, it is sufficient to prove that for every ¢ > 0 the function

M(z) = [ [ha(7) — ho(0)J+2 dhg(0) + £[ha(7) + Bs(7)]
is a major function to

U, t) = (k + 1) j[hz(r) — hy(o)F die(0) hy(t) -

Obviously

t— )(U(7,t) — U(7, 7)) = (£ — 7)(hyft) — ha(D))(k + 1) [[hz(f) — hy(0)]* dRy(o)
' (3,9)

and

(t — D)[M(E) — M(2)] = et — o) [hyt) + holt) — hal®) — hy(z)] +
+ (= D Thalt) — halo) ¥ (o) — [ Tha(r) — hal0)]**1 dty(o)] =

= &(t — 7)[hy(t) + Ps(t) — ha(7) — hy(7)] + (€ — 7) [[Bat) — Ro(0) e+ dhy(0) +

+ (¢ — 7)(hy(t) — hy(7)) f [ 2, (hat) — Ry(0))~* (he(T) — hs(0))!] dhy(o) . (3,10)

t, i=0

If t < 7 is sufficiently near <,

U(hz(t) — hy(0))e+1 dh3(6)| =< glhy(t) — hy(7)]
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and

T

[ + 1) [ (ho(7) — hy(0))¥** dhg(0) —

iy

- ft [ 2, (hs(t) — hy(0)=(hy(T) — hy(0))i] dhy(0)] = elha(t) — ho(7)] -

i, i=0
This together with (3,9) and (3,10) implies that M(7) is in fact a major function
to U(z, t); thus proving Lemma 3,4.
Now we prove the inequality 3,4. According to Lemma 2,1 or 3,1 the solutions
x(7), y(7) are bounded, so that

l2(€) —y@l =c for &edly,ty) .
Also

»

z(§) — y(&) = x(tl) —y(t) +

3,11
+ fD[F(x(T) t) — F(y(z), )] + fDF (@(7), 1) — fDFz(y(T), t) . @10

Since
1F(x(7), t) — F(y(7), &) — F(2(z), t,) + F(y(r), {))|| = Kelholts) — hoft)] ,
Lemma 3,1 and (3,11) give
& ¢
(&) — y(Ol = lle(t)) — y@E)IIl + Kctf dhy(7,) + 2 tf dhy(7o)

for £ € <t,, ¢,>. Now, assume
ll2(&) — y(&ll = lle(t,) — yE)IIL + Z K f fdh (1) ... dhg(7:)] +
+ Kt+ie f fdkz(ro) dhy(7,) ... dhy(T,) + (3,12)

U £ 7
+ 22010‘! e [ (o) () ... (7))

holds for I = k, an integer. Using (3,11), Lemma 3,1, (3,12) and (3,1), we obtain
that (3,12) also holds for I = k -+ 1. Since it does hold when [ = 0, we have
(3,12) for all I by induction.

Applying Lemmas 3,3 and 3,4 to (3,12),

@) — w(&)] = lltt) — w [ 1+ i) — haey] +
o (3,13)

s
Keeln®) — gy +2 | 4 e — ha| anen.

i=0

(l+1)

To deduce inequality (3,4), it suffices to apply Lemma 3,2 and take [ — oo.
Some consequences of (3,4) will be formulated as theorems.
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Theorem 3,1. If F(x, i) e F(G, h(t), Kn) and x(7), y(t) are solutions of

dx
& = DF(x, 1) (3,14)

on the interval {t,,t,>, then

l2(z) — y(D = lle(t,) — y(,)l exp {K[h(r) — A(t,)]}
for every 7 et tyy. Thus, if x(t,) = y(t,), then x(7) = y(z) for all 7 e L, t,).
 Note 3,3. Thus Theorem 3,1 yields a unicity theorem for the equation (3,14),

but only for increasing 7. There is no corresponding unicity property for ¢
decreasing, as has been shown in the example of note 2,1.

Theorem 3,2. Let F(x, t) € F(G, h(t), Kn); let the functions h(t) (k = 1, 2, 3, ...)
be increasing and continuous from the left on (0, T, h(T) — hi(0) — O with
k — oo. Let the functions Fi(x, t) be defined on G and satisfy

1@, ts) — Fi(@, 8)]| = [lts) — Tulty)]

whenever (x, t,), (x,t,)e G, k=1,2,3,.... Let xz(t) be a solution of g—f =

= DF(z,t) on <t,ty, and x,(t) be solutions of g% = D[F(z, t) + F(x, t)]
on the same interval {t,, t,>, lim x,(¢,) = x(¢,).
k—c0

Then x,(t) — x(t) with k — oo uniformly for v et t,>.

4. The Continuous Dependence on a Parameter

In this paragraph we prove a general theorem on the continuous dependence
on a parameter of solutions of our equations (without supposing w(n) = Ku).
First, a definition.

Definition 4,1. Let Fi(x,t) (k= 0,1,2,...) be a sequence of ' functions
defined on G and with values in E,; let R c G.

We will say that the sequence Fi(z, t) converges R-emphatically to F(x, t) with
k — oo, if the following conditions are fulfilled:

there exist functions w(n), h(t) (with properties as described in § 1);

Fu(x,t) e FG, hyy ) for kE=0,1,2,...;

lim sup [A(ts) — hi(t,)] = ho(ts) — Ro(t)), if Rolt) is continuous
k-
at t, and ty, t, < t,; (4,01)
Fr(o, to) — F;‘(xw to) = Fo(xy, t) + F;(xo, )
if (2o, ty) € G and hy(t) is continuous at ty, and Fy(x, t) satisfies
1Fo(@, ta) — Fo(, t)]| = [ho(ts) — ho(t,)]

with hy(t) the saltus-function of hy(t) and (2, 1,), (@, t,) e G; R c G, ;
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() if (2o, t,) € R, holto+) > hy(to), then to every & > 0 there is a & > 0 such
that to each o', 0 < &' < & there corresponds a k, with the following property:
. . d
If y(7) is a solution of E?-f = DFy(y,t) on the interval {t, — &', 8 + &> and
k> kg, |ly@ty — 0") — | < 6, then
ly(to + 6") — ylto — 8') — Fo(xo, to+) + Folo, to)l| < € .
Theorem 4.1. Let the sequence Fy(x, t), k = 1, 2, ..., converge R-emphatically to
Fo(z, t). Let x,(7) be solutions of
dx
& = DF\(x, t) (4,1)
on by, tyy, such that lim x,(t) = 2(7) exists whenever T e {ty,1%,>, ho(t+) =
ks

= hofx). (Obviously [iz(oy) — 2(0,)] = [ho(z) — ho(o,)| whenever 0y, oy € <ty £,
ho(o,+) = hy(0,), ko(0,+) = ho(0,)). Let 2(T) be a function on {t,, t,>, continuous
from the left, x(7) = z(v) whenever 7 et,, t,>, ho(t+) = ho(7), and with
(®(7), T) € R for © e (&, t,), (®(ts), ta) € G. Finally, let ho(t,+) = ho(8,).

Then x(7) is a solution of

dx
o= DFy(x,t)  on (i, t, . (4,2)
Proof. We may assume () = %. Choose a,, 0, € {t;, ;> With ¢; < gy,

ho(o,+) = Ro(0,), ho(o2+) = holos); also a £ > 0 and a decomposition
{&os Tys gy +ves T, 005} € A(E, 0y, 0y, Brg, @) such  that  Ay(x;+) = ho(x;) and
ho(t;4) = ho(7;) for T;non e N (=0, 1, 2, ..., s). (Such decompositions exist,
since 4 is not empty, ho(xg+) = ho(xo), ho(xs+) = ho(x,), and the set of points
of continuity of k,(t) is dense in (o, 65).) Let 7, 7, , ..., 7,1, < iy < ... < 1,
be the elements of (z,, 7, ..., 7,) 0 N (possibly empty).

Taking (x(z;), 7;) and &= —f-, there exist (according to definition 4,1)
d;, 65, 0 < 6; < d;, such that
&ppy < Ti) — 8, T+ 0 <oy, o <e,
ho(ty; + 67) — ho(vy,+) < &, ho(Ts;) — ho(Ty; — 4;) < min (%, e) R
ho(Ti, — 0)+) = holzy, — 83) 5 hol(zs, + 8)) 4) = holzs, + 8)) .
Also, there is a k, such that |j,(7;, — 8;) — (T, — Ml < %‘ for all k > k,.

Since we have sharp inequalities in the definition of A, there exists a k, > k,
such that
{0‘0,(” rl,O’ 0‘1,0: e rsn—l,()’ 0‘8;7—1,0’ Ts,,,o» o‘s,,,O} =
= {05 Tyy 6y +vey T Kiy=1> Fiym1 Tiy — LAY
€ A&, oo, 75, — 8%, hoy ) 0 A(E, xo, T, — 63, Iy, @)
for k > k,,
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{(XOJ: Ty,is X1,55 Ta,i sXe,5 «+ s Tsj-1,j, “si—l,ia Tsi»j’ o‘si,:i} =
= {}'i,. + 5’5: Kip Cipy Tipr1s Kiprrs + oo Tigy =10 iy im1> K- Tijp 6;+1} €
€ A(‘E’ Ti, + 6;’ Ti,-+; - 6;+1! hO’ (1)) N A(é? Tij + 6;, Tin - 6;+ 1 hka (D)
fork>k,j=12,...,r— 1,
{0‘0,7; Ty, Ka,rs Toyrs Kagrs oovr Ksm1,m Ts,,r’ ‘xs,.,r} =
= {Ti, + 6;: Kis K4y Tiq1s Kipt1s « oo Ks—1> Tsy o‘s} €

e A(E, 7, + 6}, gy o, ) (0 A(E, T, + 8], & Py @)

for & > k,. Now, choose a k, > k, in such a manner that
&

I Fo((rs,1), ,5) — Fi(@(wi5), vl = 5
I

”Fk(x("z',i)’ ®i1,5) — Fo(@(7,4), “i—u)” = :%,
o(|er(T;) — x(@:)|) = €
for k> ky,j=0,1,..,r,0=1,2,...,8;

From Theorem 1,1 we then have

o ;
K

||f DFy(x(7),8) — 'il [F(@i(Ts,5)s ‘xi,i) - Fk(xk('fi,j), o‘i—l,i)]” =

® .
0,7

= 2% [(xa,) — Tal0)]
for j = 07 17 e T k > kl’ ork=0. Thence

LW “s,,:l
I DFy(x), ) — [ DFoa(z), | <

2%} Xoyj

Sj
= Z ”Fk(xk(ri,j)5 %g5) — Fr(an(7s,5), Ki,i) — Fy(2(7;,), 24,5) +
i=1

+ Fo(@(7:5), %icy )l + 28 [aloxs,5) — Pi(oco,3) + holoks,s) — ho(oxo,5)] =
éi 1F (@ 75,5)s 0¢4,5) — Fro(@n(Ti,)s 0in,i) — Fi((z,5), %:5) +
+ Ful@(7;,5), sy )l + i 1Pl (Ts), *i5) — F:)k(x(fi.f), o )l +

+ .izilHFk(x(Ti,j)’ Oiy,5) — F:)k(m(ri,a')s ap )l + .ZZHF;(“’(TM): ®i) —

— Fi@(ti) iy ) + 28 halos,s) — o) + Prol@e,,5) — holxo)] =

= SZI o(ll2a(7i,s) — 2(T0,0) D nloxis) — P imy.) + 26 + hg(s, ) — Rolevo,s) +
+ 2¢ [hk(o‘s,.,j) — hi(oxo,5) + ho(“si,a) — To(ox0,0)] =
<o [; T 2hylnn,g) — 2t0s) + ol ) — h‘,(ao_j)] Koy ) — B0, - (43)
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Further

1i1+6j, ,
f DF(x (), t) = xk(Ti)- +6;) — x/c(Tij — 03,

"ij"‘si'
11-J,+67~’
| f DF(x(7),t) — Fo(x(Tii), Tii_'_) + Fo(x(fi].)a Tii)H =
1ii~61-’

o i 2
= ho(rif + ;) — ho(Tii+) + ko(fi]-) — ko(Ti,- — 0;) £ 2e = . 3
Ti;* 85’ rz-] £ 7 + 0
(on taking & >, + in [ = [ + [+ [ ,using Theorem 1,3,6 of [1]

T; —0; ;. - 6; ;. 3
i; 70 i; 0 i

on the middle term and Lemma 2,1 on the remaining terms). Since
lz(zs, — 63) — a(z)ll = llo(z;, — 87) — @(zs; — O + lla(v;, — 87) — @(z,)| =

67' ’

= 5 + ho(Ts) — ho(Ts, — 05) < 9,

the R-emphatic convergence of Fy(z, t) to Fy(x, t) implies
1,~],+6,»’ 7.+ 6§

| DF@),0— | DFya(), 0] <

Ti.— Ti.
25 7 i 7

= “xk(-tij -+ ‘S;) — xk(Tii - 6;) - Fo(x("fif)> Ti,‘H + Fo(x(fu), Tij)” —+ (4,4)
tleser =2y
r r r

—

for k > k,.
Adding the (4,3) with j =0, 1,2,...,7 and the (4,4) with j =1,2,...,7,
”szFk(xk(T)a t) — feDFo(x(T), ][ ]I
= 282 + 2ly(0y) — 2Pul(0,) + Ro(os) — ho(0,)] + (4,5)
+ {ho02) — Fgloy) — 2 (ha(n-+) — hg(m))} + 3&

nelN J

Now lim sup [A,(a,) — Ai(0,)] = ho(0y) — hy(o,). The brace approaches zero
k—c0

with & — 0 as N(&,) o> N(&,) for & = &, and U N(&) is the set of all points

£>0

of (), 05 where %,(t) is discontinuous. As & has been arbitrary, fz DF(x(7), t) —

— [ DFy(a(7), t) with k — oo. Since 2,(0,) — 2(0,), 2(0s) — @(03) with & — o0,
this implies
@(0y) — x(0,) = [ DFo(x(z), t) (4,6)

01

whenever 01, 64 € (&, £y, ho(o,+) = ho(0,), ko (03+) = ho(0,). Finally, x(o) is
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o

continuous from the left, and sois [ DF(2(7), t) as a function of o; this, together

ty
with %(t,+) = hy(t,) implies (4,6) holds for all o,, g, € {t,, {,), thus proving
Theorem 4,1.

Theorem 4,2. Let the functions F(x, t) (k = 1, 2,...) converge R-emphatically
to F(x,t). Let z(7) be a solution of
dx
Tz = PFole, ) (4,7)
on (b, tyy and satisfy this unicity condition: if z(t) is any solution of (4,7) on
by, > C by, by with 2(8) = (t,), then 2(7) = x(7) for all T e (4, ;).
Assume that to each t, e t,, t,) there corresponds a o = g(t,) > 0 such thai:
if Roltot) = holto), then (y,t) e R whenever [t — ] <o, |y — a(ty)] < o
if holte+) > hylty), then (x(ty), ty) € R and (y, t) e B whenever either t, — o <
<t <ty lly — x(to)l| < o or

b <t <to+ o, ly—alte) — Folxt), to+) + Fola(ty), &)l < 0. (4,8)

Assume also that hy(t,-+) = ho(t)), ho(ts) = ho(t,), and that

(A) to every t, e (t,, t,) with ho(ty,+) > hy(ty) and every sufficiently small 4 > 0
there exists an index ky such that to any y with |ly — x(t,)|| << 2 there corresponds
a solution x,(t) of the equation

& DR 1) (k> k) (4,9)
with (b, — A) =y (supposing t, < t, — A), defined on (t, — A,t, + 2> n
n by, tyy. Finally, let y, — x(t,) with k — oo.

Then for sufficiently large k there exist solutions x,(t) of the equations (4,9),
defined on (t,,ty> and such that x,(t,) =y, and z(7) — x(r) with k — oo
whenever ho(t-+) = hy(7), T et to).

The connection between Theorems 4,2 and 4,1 is similar to that between
Theorems 4,2,1 and 4,1,1 in [1].

Proof. Since hy(t,+) = ho(t,) and hy(t) — ko(t) with &k — oo at points of
continuity of %(t), there exist ¢; e (¢,, £,) and o, > 0 such that for sufficiently
large k one may determine solutions z,(7) of (4,9), defined on <#,, t,> and having
xi(t,) = ¥, and such that the distance of all points (z,(7), 7) (With 7 € (¢, ,))
from the complement of B is larger than g,. Using Theorem 4,1 and our unicity
condition, if, for some subsequence the lim x, (7) exists whenever 7 e (¢, {,),

j—
ho(t+) = hy(7), necessarily lim ;,(7) = () for these 7. As every subsequence

J—0

of z,(7) contains (according to (4,01), [1] and Lemma 2,1) such a subsequernce
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2i;(7) that lim a,(7) exists whenever v e (t), ), ho(T-+) = hy(7), this implies
J—>w

lim z,(7) = x(7) whenever 7 e {t,,t,> and hy(v+) = hy(7); i. e., our theorem
)

restricted to the interval (¢, ¢,).

Now assume theorem 4,2 does not hold for the whole interval <{¢;, £,>. Then
there exists an g e (f,, {,> such that the theorem holds on every interval
(s tyy with t, << tg and hg(ty+) = he(ts), but fails to hold on any <¢,, £,y with
ti0 > g (or, if 3 = ¢,, does not hold on {¢,, t,>).

If Ro(ts+) = hy(ts), then there is a & > 0 with he((ts — ) +) = ho(ts — 0)
such that, for sufficiently large k, solutions w,(z) of (4,9) are defined on
{ts — L, b5+ ) (oron (t, — £, 8,)) satisfying any initial conditions wy(ts — &) = w,
with ||w, — 2(ts — &)|| < ¢, and such that all the points (wy, (7), 7) with
7€ty — , tg + {> have a distance from the complement of R larger than ¢.
Just as we proved Theorem 4,2 on the interval (¢, ,>, we see that it also
holds on {¢,,ts + ¢ (or on (i, £,)).

It remains to examine the case of A(tg +) > h(ts), ts < ¢,. Using condition
(A), we take a sufficiently small 2 with Ay((tg — A)+) = hy(ts — 4). From the
definition of ¢ it follows that the solutions z(t) of (4,9) with z(f,) = ¥, can
be continued over the whole interval <{f,,t; — 4> (at least for sufficiently
large k); According to (A) they can be continued over <{¢,, t; + 1).

Let a; (7) be a subsequence of these continued solutions, such that l.im @ (1) =

J—>o

= u(t) whenever et t; + 1>, ho(r+) = hy(z), and take u(r) continuous
from the left. From the definition of ¢; it follows that u(7) = x(7) for Te{¢,, t;— ).
If 2 is sufficiently small, then (4,8), ;(ts — 1) — x(ts — 1) (and h(f) — ho(t) at
points of continuity of A,(f)) imply:

If t; — 2 < & < g, then there exist 7, > 0 and an index k, such that for
T e {tg— A; &) and k > k, the distance from (z;(7), 7) to the complement of R
is larger than #,; thus (u(z), 7) e R for 7 € <t,, t;). Thence Theorem 4,1 gives
u(7) = z(7) for 7€ (¢, ¢5) and thus for v = ¢, also.

Similarly we may use condition (Q) of Definition 4,1 to obtain:

If t; < &, < tg + A, then there exists 7, > 0 and an index k; such that for
T € (&, tg + A) and k > k; the distance from (x(7), 7) to the complement of B
is larger than 7,; thus (u(z), ) € R when 7 € {3 — 4, ty + 1), and Theorem 4,1
implies that Theorem 4,2 holds on the interval {t,, {; + 2).

In every case the point #; cannot exist; this proves Theorem 4,2 completely.

Note 4,1. It is simple to show that a sequence F(x, t) converges Gy -emphatic-
ally to Fy(x, t) if h(t) — ho(t) and Fy(x, t) - Fy(z, t) uniformly; and that this
also implies condition (A) for every (z,, {,) € Gp, With Rg(fy+) > hy(to). In this
manner more special theorems on continuous dependence on a parameter
may be deduced from Theorems 4,1 and 4,2.
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5. The Dirac Funection in Non-linear Differential Equations

We shall use Theorem 4,2 to examine the behaviour of solutions of the se-
quence of classical differential equations ((11—:: = f(z, t) + g{z) pi(t) where @,(¢)

tends to the Dirac function.

Let the functions ¢4(t), k = 1, 2, 3, ... be defined, real-valued and continuous
t

for te (—T,,T,)> and let D,(t) = [ @u(z)dz.
_Tl

Definition 5.1. The sequence @.(t) tends to the Dirac function, if

1

lim sup [|gx(t)]dt =L < o0, (5,1)

k> T

¢

1[[%(7)[ dv—>0, for —T,<t<0,
7, (5,2)
ﬂ‘l’k("«')ld‘t-—>0 for 0<t<T, k-

and if
Dyt) >0 for -7, <t <0, P(f) >l for 0 <t <T,, k—> 0. (53)
(Obviously L = 1.)
Definition 5,2. The sequence @i(t) tends to the Dirac function positively, if

@u(t) = 0 and if (5,3) holds.

Note 5,1. If g,(t) tends to the Dirac function positively, then @.(t) tends to
the Dirac function.

Detinition 5,3. The solution x(t), t € {¢,, t,> of a differential equation is positively
unique, if the following condition holds: if y(t), t € {t;, tsy C <t;, t;,> 18 @ solution
of the same equation, y(t,) = x(t,), then y(t) = x(t) for t € {t,, t>.

Let D be an open subset of £, let the function f(z, ¢) be defined and continuous
for ze D, t e (—T,, T,)> and let the function g(z) be defined and continuous

for z ¢ D. Suppose, that the values of the functions f(z, t) and g(z) belong to E,
and that

[If{z1s 8) — f(@o, )| = (g — l) (5,4)
lg(z,) — g(@o)l| < o(les — 24, (5,5)
f@ )l =K, lg@)| =K (5,6)

for z,, 2y, x € D, t e (=T, T,) (w(n) has the same meaning as in § 1).
The main result of this section is contained in the following two theorems:
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Theorem 5,1. Let g (t) tend to the Dirac function. Let y(n), n = 0 be increasing
1

and continuous, x(0) = 0, f dn = o0 and let
x(1)
lg(@)) — g(@.)| = zllws — z,[) for z,22¢D. (5,7

Let u(t), t € (=T, 05 (0 < Ty < T,) be a positively unique solution of
dz

— 5,8
& =11 (5.8)
let the solution v(t) of
dz
e 5,9
= 9@ (5,9)

1 L L .
v(— 5) = u(0) be defined for te<— R (v(t) is unique according to a well-
known theorem of Osgood) and let the solution w(t), t € {0, Ty» of (5,8), w(0) =
1
= v(g) be posttively unique. Let y,, — w(T,) with k — 0.

Then there exists a solution x(t), t e (—T,, Ty> of

& = e 1) + 9@ 70 (5,10)

#,(—To) = yx, (not necessarily unique) for k sufficiently large and

p(t) = u(t) if =Ty =t <0, m(t) > w(t) of 0<t< Ty, bk— 0.
For an arbitrary posttive { the sequence x,(t) converges uniformly on the intervals
<—T071_C>: <C; T0>

Theorem 5,2. Let ¢,(t) tend to the Dirac function positively. Let u(t),t e (—T, 0>
(0<Ty<T)) be a positively unique solution of (5,8). Let the solution wv(t),
ted{—1%, 1 of (5,9), v(—%) = u(0) be positively unique and let the solution w(t),
t €0, Ty of (5,8), w(0) = v(}) be positively unique. Let vy, — u(—T,) with
k — o0.

Then there exists a solution x,(t), t e (—"Ty, Ty> of (5,10), z,(—T,) = vy, (not
necessarily unique) for k sufficiently large and '

2 (t) = u(t) of =Ty <t <0, z(t) >w@t) of 0<t < Ty, bk— 0.
For an arbitrary positive { the sequence x,(t) converges uniformly on the intervals
<_'T0’ —C>7 <C, T0>

In proving Theorem 5,1 the following lemmas will be required:

Lemma 5,1. Let (5,7) be fulfilled. Let ¥(t), t € <0, S> be a continuous real-valued
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function of bounded variation and let y € D, t,€ <0, 8>. Then there exists at most
one solution z(o) of

(= y + [Dye(e) W), see Note 3,1).

Proof. If Lemma 5,1 is false, then there exist such solutions z,(c), z,(c) of
(5,11), that z,(0,) = 2,(0,), 2,(0) #F 2,(0) for o€ (0,0, + (> c0,8), { >0
(or o€ oy, — (, 0,) c<0,8)). According to Lemma 2,1 z,(¢) and z,(c) are
continuous functions of bounded variation. Let 0, < 6, < 03 < 0, + { and let
us put *¥(t) = var ¥Y(7),

7€(0,t)

1) — 7“7210) - zz(t)” _ o%
Vo) = e —a@py @0 = 270,

As
. lel(t) — za(t)“ — [[za(z) — 32(7)“[
T @ — 2@ =
= ) = @) [9(21(0)) — g(25(0))] d¥(0) || =

It — 1]
< .
= @) = =@

=200 —7)(*P() — *¥(x)

1 f lg(z1(0)) — g(25(0))|| d*¥(0)

for |t — 7| sufficiently small, Lemma 3,1 gives

ACAREACH O3 O3

ay f Aey(0) — 2 _ (o f
1)~ J 2a(o) = z(0)]) fD““”é V() =

[ACHREACA LA Oy LA
: < 2(¥¥(03) — *¥(0y))
It follows that

lz1(65) — 22(03)]|

;l“._ < 2¥¥(g,) — 2*¥(0,) < © )
7.,(77) ( 3) ( 1)

which contradiets (5,7). Lemma 5,1 is proved.

Lemma 5,2. Let the assumptions of Theorem 5,1 be fulfilled. Let P(t), t € <0, 8>
be a continuous junction of bounded variation,

PO) = —1, POS)=+13, varP()<L.

te(0,S)
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Then z(t) = v(¥(t)) s the only solution of
2(t) = u(0) + jg(z(f)) d¥(7) . (5,12)
Proof. Obviously [#()] < ‘%for t € <0, 85 and v(¥(t)) is defined. As v(s) —
= z(0) 4+ f g(v(0)) do, (5,12) holds and according to Lemma 5,1 z(t) is unique.

2
We shall show, that Theorem 5,1 follows from Theorem 4,2. According to
Theorem 2,2,1 of [1] the classical equations (5,10) are equivalent with

dz
T =DFy,1) (5,13)

t
where Fi(z,t) = [f(z, 7) dv + g(x) P(t). Let usput D(t) = 0 for —T', <t < 0;
“Tn
D) =1for0o<t =T,

Fo(z,t) =—Tff(x, 7)dz + (v(3) — »(—1%)) 2() ,

z(7) = u(zr) for — Ty < v < 0, 2(7) = w(7) for 0 < v < T,. z(7) is a solution of
dx
3 = P %) (5,14)

which fulfils the unicity condition of Theorem 4,2. Let us put
t
*Qy(t) = £[¢k(1)l dz, h(t) = Kt + (K + [v(}) — v(—})) LD(),

hi(t) = Kt + E*®(t), Fy(, t) = Fo(x, t) + [g(x) — v(}) + o(—] () .
Obviously
lim sup (Bi(ts) — ilt))) = holts) — hot,) foré,, 8, + 0,8, <t

k—o
Fi(z, t) — Fi(z, t)fort + 0,z € D, k— 00, Fi(x, t) e F(G, by, 0), k= 0,1,2, ...,
G =D x (_T1:T1)

Let us suppose for an instant, that we have already proved, that the sequence
F(x, t) converges R-emphatically to Fy(z,t) with k¥ — co where the set R
consists of the point (u(0), 0) = («(0), 0) and of all points (z,t), xeD, te
€ (—T,,T,),t &+ 0and that the condition (A) is fulfilled. According to Theorem
4,2 the solutions z(t), t e (—T,, To> of (5,13) (and consequently of (5,10))
exist for k sufficiently large and x;(t) — x(f) with k — 00, t e (—T, T'o>, ¢ & 0.
As |l@i(ty) — w(ty)l] = |helts) — Ri(t))| (see Lemma 2,1), it follows from (5,2)
that the sequence z,(f) converges uniformly on the intervals {—7,, —{),
¢, T,y for every positive .
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It remains to prove that the conditions (Q) and (A) are fulfilled.
Let us denote by Z the set of values of the function v(7), i. e. Z =

L L
=F [x =), —5 =7 = T)]. Let ¢ > 0 be less than the distance from Z
to the complement of D (¢ > 0 arbitrary if D = E,) and let H be the set of all
points z e D at a distance less than g from Z.

Lemma 5,3. There exists such a Ay > 0 that for every A, 0 << A << A, there exists
a k, with the following property:

if k >k, and if y(z), v e (—4, & c {(—A, L) is a solution of (5,10),
ly(—A) — w(0)]| < A, then y(z) e H for T e {(—A, &>,
Note 5,2. It follows from Lemma, 5,3, that the condition (A) holds.

Proof of lemma 5,3. If Lemma 5,3 is false, then there exists a sequence
of such functions y;(¢) that

y;(t) is defined for ¢t e (—4;, &> c (—4;, 4;>, 4; = 0 with j — oo, (5,15)

yi(_‘li) g Z(O) ’ 7.—')' ©, (5516)
¥,() is a solution of (5,13) for k = k;, k; — oo with j — o0,  (5,17)
yi(t) e H for tedl—1;¢&), (5,18)
yi(&) e H, (5,19)

—2; T,
[los®]dt + [lpo@]de <2, j=1,2,3, ... (5,20)

-1, 2

(first we choose 2; and then k; may be found arbitrarily large).
¥;(t) is a solution of (5,10) for k£ = k;. Let us introduce a new variable

¢
7= [[A;¢ + ]%,.(U)l] do, —A4=t=1;.
Sy

Consequently z;(t) = y,(¢,(t)) satisfies
%_z — _%f(z, ta(T)) + g(z) . (pkj(ta(r)) ,
25+ oy (ti())l A5+ (7))
& 4
0sT=T= [Iit + gl de < TF = [ + Ipy (ol do,
—2 =4
2(0) = y,(—4;),

Obviously lim sup TF = L (see (5,2)). Let us put

j—>0

Y(z) = *—% +f'Tlik”;(fi(_Ld0, 7e<0, T .
27+ |Px,(t3())]
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It follows that

lim sup var Y,(t) =L, (5,21}
] te(0,T;*)
PyTf)=— 4%+ f% £) dt — % (5,22)

according to (5,2) and (5,3),

2,(0) +f _Jele) @) g, +f (0)) A¥,(0), Te0,t)> . (5,23)
l: + |@i;(t5(0))]
As z;(t) and ¥(7) fulfil a Lipschitz condition (with a fixed constant), there
exists such a subsequence j, that 7, — T (0 =T = L), 2;(7) — 2(7) uniformly
(2(7) is defined for 7 € (0, 7)) and ¥, (7) — ¥(7) uniformly with I — oo (¥(7) is
defined for 7 € 0, L)). Obviously z(0) = (0), 2(t) e Hfor 0 < v < T,
lim 2;(T;) = 2(T) € H—-H. (5,24)
l—w

Passing to a limit in (5,23) for j = j,, [ - oo we obtain

2(7) = x(0) + fg () d¥(0), Te€<0,T>.
As P(0) = — L, P(L) =%, var P(t) = L (see (5,21), (5,22)), according to
te(0,L)

Lemma 5,2 2(7) = v(¥(7)), 70,1, specially 2(T) = v(¥(T')) e H, which
contradicts (5,24). The proof of Lemma 5,3 is complete.

Let us prove the condition () from Definition 4,1. If this condition (for
equations (5,13) and (5,14) is not fulfilled, there exists a sequence of functions.
y;(t) satisfying (5,15)—(5,18), (5,20) with &; = 4; and

lim inf [ly,(4,) — 0(3)] > 0. (5,25)

j—wo
As & = J,;, it follows that 7'; = T, T = L and in the same way as before
we obtain v(}) = o(¥(T)) = 2(T) = lim z;(T;) = lim y,(4;) which contra-
l—w -

dicts (5,25). Lemma 5,3 is proved and the proof of Theorem 5,1 is complete.

The proof of Theorem 5,2 is quite similar.

Lemma 5,4, Let the assumptions of Theorem 5,2 be fulfilled. Let ¥(t), t € <0, 8>
be continuous and non-decreasing, ¥ (0) = — %, ¥(s) = 1. Then z(t) = v(P(t))
18 the only solution of

2(t) = u(0) + fg ) d¥(7) (5,26)

Proof. Let z(¢), ¢t € <0, s> be a solution of (5,26). As ¥(¢) is non-decreasing,
2(t) = =z(t,) for te (), ty if ‘,l’(tl) = Y(t,). Consequently there exists such
a (continuous) function ¢(s), s e (—1, ¥(8)), that 2(t) = q(¥(?)). As
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q(¥(t)) = w(0) + Ofg({I(Y’(T))) d¥(v) ,
it follows, that
q(s) = u(0) + ég(q(a)) do

and q(f) = v(¢) according to the unicity assumption concerning »(¢). Lemma 5 4
is proved.

In order to prove Theorem 5,2 we may repeat the proof of Theorem 5,1 with
slight changes only.
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Pesonme

OBOBIIEHHBIE OBBIKHOBEHHHKIE TUMOEPEHIMAJIbHBIE
' YPABHEHUIA

fIPOCJIAB I{YPHBEFIJIB (Jaroslav Kurzweil), IIpara
(Hocrynmio B pegaxnmio 17/11 1958 r.)

MomsaTne o600meHHOTO nUQPepeHnuaNTbHOr0 YpPaBHEHUsT OBLIO BBEIEHO
B [1], § 2. (Msr monbayemcss § 1 u § 2, mn. 1 m 2 pa6orst [1].) Mur goraskem cy-
IIeCTBOBAHME PelleHNs W HeIPepPHBHYIO 3aBHCHMOCTH OT IIapaMerpa JJis ompe-
JeJIeHHOTO Kjacca 0006ImeHHBIX auddepeHnunanbHEX ypaBHEHHUH, OTIMYHOTO
OT KJ1acca, paccmorpenHoro B [1]. Mecaexyemsiii kaace 0600meHHEX Juddepen-
OUAIbHEX yPaBHEHUI MMeeT PelleHHA ¢ OrPAHMYEHHBIM M3MeHeHHeM. Pesyirs-
TATH, Kacamlquecs HEIpPepHIBHON 3aBHCHMOCTH OT HapaMerpa, IIPEMEHSITCH
K KJlaccmiecKuM Iu@epeHIralbHbiM YPaBHEHHAM, IOCKOIBKY B MX IPaBHIX
YacTaX BeTpedanTcs (yHKnmu, 6iamskme K QynxunumaM Jlmpaxa.

§ 1 mocuT BcmoMoOTaTeNbHEBIT Xapakrep. [loxasbiBaercs cyIIecTBOBaHUE HH-

Terpaia be(x(r), {) npu caefyOIUX YCIOBAAX:

01
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Dyaxnus F(z, t) onpeneseHa Ha OTKPHITOM HNOAMHOKecTBe G JeKapToBa
npomssesenns K, X (0,7 (E, ecrs m-MepHOe EBKIHIOBO IPOCTPAHCTBO)
U YIOBIIETBOPSIET YCJIOBUAM

I1F(z, t) — Fx, )] = [h(ts) — k(B,)], (0,1)
[1F (g, t,) — Flxg, t) — F(xy, ;) + F(xy, )] = ollee — 2,])) [A(t) — h(2,)], (0,2)

rae ¢yurnus A(t) asadercs mist ¢ e (— 7', T) BozpacTaomell n HempepHIBHOMI
caeBa, a (yHKnua o(n) apasercsa mas 7 = 0 Bospacraiomieil, HeNpPepHIBHOK
u w(0) = 0; PyHrnua z(r) ¥WMeer OrpaHmYCHHOE W3MEHEHHE, HeUDephIBHA
caesa u (2(t), 7) e G mua 7 e (o, 0,).

B § 2 noxaswiBaerca Teopema cymectsoBanusa (Teopema 2,1) mua o6o6meHHOr0
nudPepeHnraIbHOTO yPABHEHAS

dz
E‘L—' = DF(.’IJ, t): (013)

(ecnm ynwumsa F(z, t) ymosmersopsier yciaosusam (0,1) m (0,2)).

IIpu srom pemenme, CymecTBOBaHHE KOTOPOI'O NOKA3aHO, WMEET OrpaHH-
YeHHOe M3MeHeHme M HempephBHO ciieBa. OT TeopeMBl CyImecTBOBAaHMA OOBIU-
HOTO THHA TeopeMa 2,1 oTiIm4yaercs TeM, 9TO A TAHHON TOYKH (&, f)) AOKA3aHO
cymecrBoBaune pemenus ¥(t), x(fy) = x, wisn {, =< =< t, + ¢ ({ > 0), ognaxo,
pemenue z(tr) He 00f3aTeNLHO CYHNIECTBYeT I T << fy. (ITO CBA3AHO ¢ Ipef-
nonoskerneM, 4To QynKunA h(f) menpepsiBua ciesa. Ecau () nenpepsiBra, To
pemenue z(t), ¥(f)) = ¥, CyIEecTByeT B HEKOTOPOIl OKPECTHOCTU TOYKH I.)

IToBomoM K McCIIElOBaHUIO BTOTO Kiacca 0600MmEeHHBX Mu(PepPeHInaibHbIX

ypaBHeHNIT GBUIO cienyomee paccys;ifaenue: IlycTs mama mociie[oBaTeNbHOCTD
KIaccudecKnX AudepeHnrnaTbHEX YpPaBHEHMIT

dx
E = + (Pk(t) ’ le <_~ Ty T> ) (0’4)
rjage
t
P(t) =0 1 D (t) = [gir) dr — 0 coors. 1, (0,5)
-T

ecmn — T £t <0, cootB. 0 <t <T, k— 0.

Ilycrs x4(t) — pemenme ypaBuenmsa (0,4), x,(— 7T') = 1. OueBumno, (t) —
—z(t) ma t £ 0, k— oo rxe

x(t)—<€”T’ —T=t=0;
(" + 1) et, 0<t=1.
M= 3agaamch MeTbl0 HOCTPONTH TaKOM Kiace 0600menusX AnddepennaabHbix
ypaBHeHuit, 9T00H QyHKOUs 2(f) ObljIa pemeHmeM MOAXOSIEro 0606IIeHHOTO

YPaBHEHUS M 9TOOBI CXONUMOCTS Zx(f) — x(f) ObuIa cireicTBEEM O0IIEN TeopeMbl
O HeIPepHBHOI 3aBHCHMOCTH OT IlapaMerpa.
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Ecau f(», t) ynosnersopsier yciosmsam Kapareomopm
I, O] = m(t), (0,6)

rie m(t) — abcomoTno maTErpUpyemas PyHKIHUA U

(0,7)

f(, t) aBuserca npu moGomM PUKCHPOBAHHOM ¢
HenpepsBHOH QYHKIMeH TePeMEeHHOTO & ,

tro Kasmoe pemennme (tuma Hapareomopu, 1. e. a6comoTHO HempepsIBHOE)
ypaBHeHU:A

&~ ), 0.9)

ABJIseTcsl TakMe pemenueM ypasrenus (0,1) m mao6opor, ecin
t

F(z,t) = [f(x,7)d7. (0,9)
0
HlokazaTenbcTBO BHOJIHE AHAJIOTHYHO JOKa3aTedbCTBY B § 2 paborst [1]
JuiA cirydad, Korga f(x, t) HempephIBHA.

Teopema cymecrsoBanus 2,1 CONEPKUT B KadecTBe YaCTHOTO CIydas TEOPEMyY
i

cymecrBoBanna Kapareogopu; ecin momosknm A(t) = [m(7) dz, 1o (0,2) Bu-
0

rexaer u3 (0,6), (0,7)) u (0,9), o (0,3) He MOKHO WMMeTh MecTa HH IS Ka-

Kol ¢yHKmEM w(n). B npegmomosxennu, uro gyHkmuda f(x, t) ompenemena Ha

muoxkecrse Ka(—T,T, rpe K — KoMrakTHO® MHOMecTBO, 1 ncnoausaer (0,6)

u (0,7), Bce-TaKkm ygaercsa HOKaszaTh, YTO BCerZla CYIIECTBYIOT TaKume (YHKIUA
t

w(n), A(t) (A(t) ormmuna or [m(z)dz), aro (0,2) m (0,3) HCHOMHEHE!.
0

B § 3 mokasmiBaeTcd Teopema 06 OTHOBHAYHOCTH LpH ycioBuH w(n) = K.
(9ra Teopema ciregyeT m3 HepaBEeHCTBA NI PACCTOSIHUA MeKIY ABYMs pemIeHH-
SIMH aHAQJOTHYHO TOMY, KaK M B KJIACCHYECKOM ciydae.)

B § 4 poraswiBaercsa o6mas TeopeMa O HeIPepHIBHOM 3aBUCHMOCTH OT I1apa-
Mmerpa (reopema 4,2). Ilpennmomoskenus, ¢ KoTopsiMu MBI paGoraeMm B § 4, mo-
BOJIBHO CJIOKHEL. I'JIaBHBIE TPYHHOCTH BaKIIOYAIOTCS B CIASXYIOMUX Qaxrax:

1. Knaccuueckoe ypasuenwe (0,4) paBHOCHIBHO 00OOIEHHOMY YPaBHEHHIO

& — Dlat + (0], (0,10)
OJIHAKO ACHO, 94T0 He cyIlecTBYeT Taroil Gyuxmun A(t), arob (0,2) mMmeso MecTo
s F(z, ) = ot + Du(t), k= 1,2,3, ...

2. CxopmMocTs TocHefoBaTenbHocTH AnddepernuanbEEX ypaBHeHmit (0,4)
3aBUCHUT, O9EBHIHO, TOJILKO OT NOBeleHHs IPAaBHX JacTedl ypaBHEHWH B HaJ-
JIesKAIIM 06pasoM ompeielleHHO! OKPEeCTHOCTH PAa3pHIBHOIO IIPENE/BHOTO pe-
menusa x(t).
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B § 5 reopema 4,2 mcumosIb3yeTcs IS MCCACOBAHNUS ITPEIEIHHOTO MOBeeHNs
PelLleHNN HOCJIe0BATeILHOCTH ypPaBHEHIH

dz
1 = 1@ 0 +9@) ), (0,11)

ecan f(x, t), g(x) u ¢p(t) — HenpepoiBEbIE PYHKINA U CIIH IIOCIEAOBATEIHHOCTD
@i(t) cxommrest kK Qynxnum [Qwpaxa. Msl roBopum, 4ro HOCIEIOBATEIBHOCTH
@i(t) cxommres ® QyHknmm [lupaka, ecom

T
flege@®dt =L < o0 poa k=1,2,3, ...,
-T

lim [ —fslq)k(t)] dt + fT[tpk(t)ldt] =0 (pna moGoro & > 0) (0,12)
ks -~-T &
u ecin

t
lim [gu(zr)dr =0, coors. 1 (mma —7T =t <0,coor. 0 <t =7T).
k>0 —
Ecam, xpome 1010, @4(t) = 0, TO MBI TOBOPHM, UTO IIOCIEAOBATEIHLHOCTH ¢(f)
cxonuTess K Qpyurumn JIupaxa HomoKuTeIbHO.

ITyemv pewernue u(t), t e <—T, 0y, ypasuenus

dx
E = f(x7 t) (0113)

00no3Hauno onpedeasemces navansvrum ycaosuem w(—7T) = y,. [lycmov pewenue

o(t), t e <— %, + 3, ypasuenua

& @) (0,14)

00H03HAUHO onpedeasemca HavanbHbim Ycaosuesm v(—%) = u(0) u nycms, Hako-
ney, pewenue w(t), te <0, T>, ypasuenusa (0,13) o00nosnauno onpedensemcs
Hauasvnvim ycaosuem w(0) = v($). Ilycmo 4y, — yo Ona k — oo.

Ecau nocaedosamenvrocme @i(t) crodumes x gynryuu Jupaka nosoncumens-

HO, mo 0as docmamouno Goavwux k cywecmeyem pewenue xy(t), t e <—T, T>
ypasnenus (0,11), z( —71) =y, u

lim z(t) = u(t) , cooms. w(t) (Pur —T <t<<0, cooms. 0 <t <=T).

910 yTBEpKNEHHE CHpaBe[IMBO M Ipu Goiiee €IabOM LpPEIOIIOKEHNH, a
EMEHHO, YTO IIOCIeNOBATeIBHOCTH @x(f) cxomures K Qymxmmm mpaxa, ecim

BBITIOJITHACTCA yCJIOBUE
1

lotes) — 9@ = 2lles — i) rae f Rk

m ecnim pemenme v(¢) ypasuenus (0,13), v(—3) = %(0), onpenemeno pis

te<——\+ >

1<>| ™~
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