Czechoslovak Mathematical Journal

Vlastimil Ptak
A remark on approximation of continuous functions

Czechoslovak Mathematical Journal, Vol. 8 (1958), No. 2, 251-256

Persistent URL: http://dml.cz/dmlcz/100299

Terms of use:

© Institute of Mathematics AS CR, 1958

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100299
http://dml.cz

‘YexocroBanmkmii MaTeMaTHUeCKMii :KypHaX, T. 8 (83) 1958, Ilpara

A REMARK ON APPROXIMATION OF CONTINUOUS
FUNCTIONS

VLASTIMIL PTAK, Praha
(Received September 16, 1957)

The author gives a direct geometrical proof of Haar’s theorem on
approximation of continuous functions and of the Cebysev characte-
rization of the polynomial of best approximation.

In his beautiful paper [2] on the application of Minkowskian geometry to
the theory of approximation, A. Haar has given a necessary and sufficient
condition that the best approximation of any continuous function by means
of linear combinations of » given continuous functions be unique. His proof is
based on the following idea. Suppose we have n linearly independent conti-
nuous functions z,, ..., z, defined on <0, 1>. In E, we consider the set K of
all vectors [£,, ..., §,] which fulfil the inequality

max |§2,(f) + ... + Ex,()] S 1.

0<i<1
It is easy to see that K is a convex body in E, in the sense of MINKOWSKI.
The discussion of the best approximation by linear combinations of z,, ..., ,
is then reduced to the study of properties of the Minkowskian geometry
defined by K. The proof, though simple and clear enough, is by no means a
short one. It is especially the sufficiency of Haar’s condition which requires
more subtle considerations. Even modern proofs (see, e. g. [1]) devote to the
sufficiency more than three pages.

It is the purpose of the present remark to give a simple préof of Haar’s
theorem using only the simplest geometrical notions.

Theorem 1. Let T' be a compact Hausdorff space and let us denote by C(T') the
space of all continuous functions on T with the usual norm. Let E be a given
n-dimensional subspace of C(T). The best approximation of every x e C(T) by
means of elements of E is unique if and only if there does not exist an e e E,
e + 0, such that the equation e(t) = 0 has at least n distinct solxutions.

We begin with a simple
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Lemma. Let L be a p-dimensional subspace of C(T). Let f be a linear functional
on L of norm one. Then there exist p distinct points ¢; ¢ T and numbers A; such

P I
that f = > At; and 3 |2, = 1. The equation f = > A, is, of course, taken to mean
i=1 i=1

&, fr = >Aa(t;) for every x e L.

To prove this lemma, we note first that, with every point ¢ 7', we may
associate a linear functional ¢(t) on L defined by the relation {(x, ¢(t)> = z(f)
for every « ¢ L. Clearly ¢ is a continuous mapping of 7" into L’. At the same
time, the norm of ¢(f) is at most one for every t ¢ 7' and it is easy to see that
the unit sphere of L’ coincides with the closed symmetrical convex envelope
of the set ¢(7'). Indeed, suppose we have an «’ ¢ L', |¢'| = 1 such that 2’ does
not belong to the closed symmetrical convex envelope of ¢(7'). It follows?!)
that there exists a point @ e L such that sup |[<z, p(T)>| < <=, «’>. This is,
however, a contradiction, since |o'| <1 and sup <z, ¢(T)>| = |z|. The
mapping ¢ being continuous, ¢(7') is compact and it follows from a result of
CARATHEODORY?) that every point fof the unit sphere of L’ may be expressed in

14
the form > Z,p(t;) with > |4;| = 1. If the norm of f is one, > |2;| < 1 is impossible
=1

which concludes the proof.

Before going into the proof it is convenient to state Haar’s condition in
another equivalent form. We have the following equivalence. There exists in

1) If W is a closed convex subset of a finite-dimensional vector space and w a point
outside W, there exists, according to a well-known theorem, a hyperplane separating
W and w. Since ’ does not belong to the closed symmetrical convex envelope of ¢(7),
it does not belong to the closed convex envelope of the union of ¢(7') and —¢(7).
Acording to the separation theorem there exists a linear functional ¢ on L’ such that
sup |9(¢(T))| < g(z’). The space L’ being finite dimensional, linear functionals on L’
may be identified with elements of L.

-2) The result of Carathéodory referred to is the following: Let E be a p-dimensional
vector space and let M be a compact subset of K. The closed convex envelope K

p+1 p+1
of M consists of all vectors of the form Z A;m;, where m; e M, 1, = 0 and Z A; = L
i=1 i=1

»
If & is a point of the boundary of K, it may be expressed in the form k = 2 Am;
=1
» K
where m; e M, 2, = 0 and Z Z; = 1. Now suppose we have a compact set B and
i=1
a point x of its closed symmetrical convex envelope S. There exists a number § =1

such that dx belong to the boundary of S. Since S clearly coincides with the closed
D

convex envelope of the union of B and — B, we may express 6z in the form dz = Z w,e;:b;,
i=1

? »
where b, e B, ¢, = £ 1, w;, = 0 and Zwi = l.Ifweput i; = (-D—;E, we havex = z}.tbi

=1 =1

»

and Z |4;] = 1. For a simple proof of these results, using the definition of convexity
i=1

only, see a recent paper of the author’s [3].
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E a nonzero element e with at least » distinet zero points ¢, ..., ¢, if and only
n

if there exists a nonzero linear combination f = zz,.t,. which vanishes on E.
i=1

Indeed, if e, ..., e, is a basis of £, both conditions express the fact that

det e;(t;) = 0.

Proof of Haar’s theorem. Suppose first that the best approximation is
not always unique. Then there exist points z,e C(T), ¢, ¢ E and a nonzero
e € B/ such that, for every ¢ small enough in absolute value, the point e, 4 e
is the best approximation of x,.

Let us denote by L the linear span of K and «,, so that L has » 4 1 dimen-
sions. If we put w, = x, — ¢,, it follows that there exists a linear functional

f of norm one on L vanishing on £ and assuming the value |w,| on w,. It follows
n+1
from our lemma that f may be expressed in the form Z7~iti where t; ¢ 7' and

n+1 i=1
> u=1.

We shall distinguish two cases:
1° We have 4; =+ 0 for every 4. Since

n+1

n+l
|w0| = {w,, ) = zliwo(ti) and Z ‘E‘in =1,
=1 =1

we have |w,(t;)| = |w,| for every 1. Since |w, + e¢| = |w,| for small ¢, it follows
that e(¢;) = 0 for every 3.

20 We have 1, = 0 for some ¢. We may clearly suppose that 4,,, = 0. In

n
this case, > Af; is a nonzero linear combination of n points vanishing on E.
i=1
The sufficiency of Haar’s condition is thus proved. On the other hand,
suppose that Haar’s condition is not fulfilled. Then there exists a nonzero
point ¢, € B, |¢,] = 1 which vanishes in n distinet points ¢; ¢ 7' and a nonzero
n

linear combination f = > A#; which vanishes on B. We may clearly suppose
i=1

that > |4;] = L. Now choose an arbitrary @ e C(T') such that |a| =1 and a(t;) =
i1

= sign A, whenever ; # 0. Let us define the function x, by the relation z,(t) =

= a(t)(1 — |e(t)]). We have clearly z,(t;) = a(t;) = sign 4; for 1; + 0, [x,| =1

and |zo(t)| + le(t)] < 1 for every teT. It follows that |z, — e =

=< max (|z,(t)] + leo(t)]) = 1. We have, however, |z, — e| = 1 for every e K.
teT
Indeed, if [z, — e| < 1 for some e, it would follow

1 :<x0:f>=<x0—e>f> —S— [CL‘O—QI |fl<1’
which is a contradiction. It follows that both points 0 and ¢, are best appro-
ximations of z,.
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We conclude this remark with a few words concerning the characterization
of the polynomial of best approximation. First of all, let us have a compact
Hausdorff space 7' and an n-dimensional subspace £ c C(7') fulfilling Haar’s
condition. Let z ¢ C(T'), x non € ¥ be given; the best approximation e ¢ B of
z is thus uniquely determined. We assert now that the equation |x(t) — e(t)| =
= |x — e| is fulfilled for al least n 4 1 distinct points t. In fact, we know that

there exist » + 1 points ¢, ...,¢,,; and real numbers 4, ..., 4,,, with
n+1 n+1

le] 1 such that, forf—ZZ.t we have (x —e, ) = [ —e| and <E, > =

= O From the first equatlon 1t follows that |(t;) — e(t;)| = |x — e| whenever
A; = 0. We have, however, 1, & 0 for every ¢ since, in the contrary case,
E would not fulfil Haar’s condition (see the section 2° of the preceding proof).

A more precise result is hardly to be expected in the general case. It may
be shown on examples that there may be exactly » 4+ 1 points #; where
le(t;) — e(t;)] = |x — e| and «(t,) — e(t;) = |x — e| for every i.

Let us consider now the case where 7' is a compact interval <a, b)>. In this
case the above method yields a particularly simple proof of the classical theo-
rem of CEBYSEV. We intend to show that the theorem of Cebygev as well as
the related result of DE LA VALLEE-PoUSSIN are both immediate consequences
of the following lemma:

Let T = <{a, b) and let E an n-dimensional subspace of C(T') fulfilling Haar’s

condition. If t, <t, < ... <t,,, are given points of T, there exists exactly one
n+1

(apart from a scalar factor) nonzero linear combination f = > At; vanishing on K.
i=1
All numbers A; are different from zero and they alternate in sign.

Proof. The space E being n-dimensional, the n + 1 functionals ¢, are linear-
n+ 1
ly dependent on E. There exists a nonzero linear combination f = > A¢; such
=1
that <&, f> = 0. The assumption that 1; = 0 for some 7 would lead to a contra-
diction with our assumption concerning £. First of all, let n = 1 and let e be
a nonzero element of . It follows from Haar’s condition that e(¢) is different
from zero on the whole of 7'. Suppose now that Ae(t;) + A.e(t,) = 0. We have
sign e(f,) = sign e(t,) so that 1, and A, cannot be of the same sign. Suppose now
that » > 1 and that there is an index p such that 4, and 4,,, are of the same
sign. It follows that there exists an 7 such that at least one of the numbers
Ai_y or A, is of the same sign as 4,. Clearly we may suppose that 4; > 0.
Choose now two positive numbers «;_, and «;,, such that

Aicgig + Aigai > 0.
Now there exists an e ¢ E such that e(f;_;) = &;_,, €(t;;;) = x4 and e(t;) = 0
for every j different from ¢ — 1, ¢, ¢ + 1. Since <E, f) = 0, we have, in par-
ticular, <e, > = 0.
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This reduces to
Aigoiy + Ae(ts) + Aipaxigy = 0.

It follows that e(f;) << 0. Since e(t;_;) and e(¢;,,) are positive, there exist points
Si_qp € (ti_y, t;) and s, € (§;, t;41) With e(s;_;) = e(s;4,) = 0. This is a contra-
diction with Haar’s condition.

Theorem 2. Let T = {a, b) and let E be an n-dimensional subspace of C(T')
fulfilling Haar’s condition. Let x € C(T') be given. The following condition is suffi-
ctent and necessary for a point e € E to be the best approximation of x:

There exist n + 1 points t, <t, < ... <t,.; of T and a number ¢ with
le| = 1 such that x(t;) — e(t;) = (—1)i el — e].

Proof. Let e be the best approximation of x. We have then a functional
n+1

n+1
f =2 At; with 3 |2;| = 1 vanishing on E and such that (x — ¢, ) = |z — e|.
i=1 i=1
Hence «(t;) — e(t;) = |v — e|sign 4; whenever 4; £ 0. If the ¢, are arranged
in increasing order, it follows from the preceding lemma that the 4, are dif-
ferent from zero and alternate in sign. The rest is easy.

The second part of the theorem is a consequence of the following result
of de la Vallée-Poussin.

Let T = {a, by and let E be an n-dimensional subspace of C(T) fulfilling
Haar’s condition. Let xye C(T) and e, e £ be given. Suppose there exist n + 1
points t; <<ty < ... <t,., positive numbers &; and a number ¢ with |¢| =1
such that

Zo(t:) — eot;) = (—1) ee; .
We have then

min |z, — e| > min ¢,.
ecE 1gisn+1

Proof. According to the preceding lemma there exist positive numbers

n+ 1

Ay ooy Mgy With 3 2; = 1 such that

1
n+1

f= z (—1) edit;
i=1

vanishes on E. For every e ¢ £, we have

n+1
leg — €] = @y — e, [ = <X — €, [y = D Aie; = ming;
i=1

which concludes the proof.
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Peswome

3AMETKA OB AHNIIPOKCUMALUN HEHNPEPBIBHbIX
OVHRIUNA

BJACTUMMJI IITAK (Vlastimil Ptak), IIpara
(ITocrymmiro B pegaknuio 16/IX 1957 r.)

B crarse maercs npsmoc reomerpudeckoe IOKA3ATENbCTBO TEOPeMB Xaapa
0 NpabIMKeHMH HEITPCPLIBHAIX ()yHRIUIL.

Teopema. ITycmv T — romnarmmoe xaycdopgdoso npocmparncineo; 0603HAUUM
uepes C(T') npocmpancmeo ecex nenpepuisnwix gyrnkyuii na I ¢ obwviunoi Hop-
soit, Hlyeme E — danrnoe n-meproe nodnpocmpancmeo npocmpancmea C(T).
Hauaywwee npubaumcenue ramcdozo x e C(T) npu nomowu svemenmos npo-
cmparncmea E 6ydem odnosnauno onpedesennpim mozda u mosvko mo2oa, ecau
He 6ydem cywjecmeosams Henyaeol dnemenm e € B, umeowuii ne memee wem
N Pas3AuuHblL HYysel.
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