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‘YexocroBanmkmii MaTeMaTHUeCKMii :KypHaX, T. 8 (83) 1958, Ilpara

A REMARK ON APPROXIMATION OF CONTINUOUS
FUNCTIONS

VLASTIMIL PTAK, Praha
(Received September 16, 1957)

The author gives a direct geometrical proof of Haar’s theorem on
approximation of continuous functions and of the Cebysev characte-
rization of the polynomial of best approximation.

In his beautiful paper [2] on the application of Minkowskian geometry to
the theory of approximation, A. Haar has given a necessary and sufficient
condition that the best approximation of any continuous function by means
of linear combinations of » given continuous functions be unique. His proof is
based on the following idea. Suppose we have n linearly independent conti-
nuous functions z,, ..., z, defined on <0, 1>. In E, we consider the set K of
all vectors [£,, ..., §,] which fulfil the inequality

max |§2,(f) + ... + Ex,()] S 1.

0<i<1
It is easy to see that K is a convex body in E, in the sense of MINKOWSKI.
The discussion of the best approximation by linear combinations of z,, ..., ,
is then reduced to the study of properties of the Minkowskian geometry
defined by K. The proof, though simple and clear enough, is by no means a
short one. It is especially the sufficiency of Haar’s condition which requires
more subtle considerations. Even modern proofs (see, e. g. [1]) devote to the
sufficiency more than three pages.

It is the purpose of the present remark to give a simple préof of Haar’s
theorem using only the simplest geometrical notions.

Theorem 1. Let T' be a compact Hausdorff space and let us denote by C(T') the
space of all continuous functions on T with the usual norm. Let E be a given
n-dimensional subspace of C(T). The best approximation of every x e C(T) by
means of elements of E is unique if and only if there does not exist an e e E,
e + 0, such that the equation e(t) = 0 has at least n distinct solxutions.

We begin with a simple
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Lemma. Let L be a p-dimensional subspace of C(T). Let f be a linear functional
on L of norm one. Then there exist p distinct points ¢; ¢ T and numbers A; such

P I
that f = > At; and 3 |2, = 1. The equation f = > A, is, of course, taken to mean
i=1 i=1

&, fr = >Aa(t;) for every x e L.

To prove this lemma, we note first that, with every point ¢ 7', we may
associate a linear functional ¢(t) on L defined by the relation {(x, ¢(t)> = z(f)
for every « ¢ L. Clearly ¢ is a continuous mapping of 7" into L’. At the same
time, the norm of ¢(f) is at most one for every t ¢ 7' and it is easy to see that
the unit sphere of L’ coincides with the closed symmetrical convex envelope
of the set ¢(7'). Indeed, suppose we have an «’ ¢ L', |¢'| = 1 such that 2’ does
not belong to the closed symmetrical convex envelope of ¢(7'). It follows?!)
that there exists a point @ e L such that sup |[<z, p(T)>| < <=, «’>. This is,
however, a contradiction, since |o'| <1 and sup <z, ¢(T)>| = |z|. The
mapping ¢ being continuous, ¢(7') is compact and it follows from a result of
CARATHEODORY?) that every point fof the unit sphere of L’ may be expressed in

14
the form > Z,p(t;) with > |4;| = 1. If the norm of f is one, > |2;| < 1 is impossible
=1

which concludes the proof.

Before going into the proof it is convenient to state Haar’s condition in
another equivalent form. We have the following equivalence. There exists in

1) If W is a closed convex subset of a finite-dimensional vector space and w a point
outside W, there exists, according to a well-known theorem, a hyperplane separating
W and w. Since ’ does not belong to the closed symmetrical convex envelope of ¢(7),
it does not belong to the closed convex envelope of the union of ¢(7') and —¢(7).
Acording to the separation theorem there exists a linear functional ¢ on L’ such that
sup |9(¢(T))| < g(z’). The space L’ being finite dimensional, linear functionals on L’
may be identified with elements of L.

-2) The result of Carathéodory referred to is the following: Let E be a p-dimensional
vector space and let M be a compact subset of K. The closed convex envelope K

p+1 p+1
of M consists of all vectors of the form Z A;m;, where m; e M, 1, = 0 and Z A; = L
i=1 i=1

»
If & is a point of the boundary of K, it may be expressed in the form k = 2 Am;
=1
» K
where m; e M, 2, = 0 and Z Z; = 1. Now suppose we have a compact set B and
i=1
a point x of its closed symmetrical convex envelope S. There exists a number § =1

such that dx belong to the boundary of S. Since S clearly coincides with the closed
D

convex envelope of the union of B and — B, we may express 6z in the form dz = Z w,e;:b;,
i=1

? »
where b, e B, ¢, = £ 1, w;, = 0 and Zwi = l.Ifweput i; = (-D—;E, we havex = z}.tbi

=1 =1

»

and Z |4;] = 1. For a simple proof of these results, using the definition of convexity
i=1

only, see a recent paper of the author’s [3].
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E a nonzero element e with at least » distinet zero points ¢, ..., ¢, if and only
n

if there exists a nonzero linear combination f = zz,.t,. which vanishes on E.
i=1

Indeed, if e, ..., e, is a basis of £, both conditions express the fact that

det e;(t;) = 0.

Proof of Haar’s theorem. Suppose first that the best approximation is
not always unique. Then there exist points z,e C(T), ¢, ¢ E and a nonzero
e € B/ such that, for every ¢ small enough in absolute value, the point e, 4 e
is the best approximation of x,.

Let us denote by L the linear span of K and «,, so that L has » 4 1 dimen-
sions. If we put w, = x, — ¢,, it follows that there exists a linear functional

f of norm one on L vanishing on £ and assuming the value |w,| on w,. It follows
n+1
from our lemma that f may be expressed in the form Z7~iti where t; ¢ 7' and

n+1 i=1
> u=1.

We shall distinguish two cases:
1° We have 4; =+ 0 for every 4. Since

n+1

n+l
|w0| = {w,, ) = zliwo(ti) and Z ‘E‘in =1,
=1 =1

we have |w,(t;)| = |w,| for every 1. Since |w, + e¢| = |w,| for small ¢, it follows
that e(¢;) = 0 for every 3.

20 We have 1, = 0 for some ¢. We may clearly suppose that 4,,, = 0. In

n
this case, > Af; is a nonzero linear combination of n points vanishing on E.
i=1
The sufficiency of Haar’s condition is thus proved. On the other hand,
suppose that Haar’s condition is not fulfilled. Then there exists a nonzero
point ¢, € B, |¢,] = 1 which vanishes in n distinet points ¢; ¢ 7' and a nonzero
n

linear combination f = > A#; which vanishes on B. We may clearly suppose
i=1

that > |4;] = L. Now choose an arbitrary @ e C(T') such that |a| =1 and a(t;) =
i1

= sign A, whenever ; # 0. Let us define the function x, by the relation z,(t) =

= a(t)(1 — |e(t)]). We have clearly z,(t;) = a(t;) = sign 4; for 1; + 0, [x,| =1

and |zo(t)| + le(t)] < 1 for every teT. It follows that |z, — e =

=< max (|z,(t)] + leo(t)]) = 1. We have, however, |z, — e| = 1 for every e K.
teT
Indeed, if [z, — e| < 1 for some e, it would follow

1 :<x0:f>=<x0—e>f> —S— [CL‘O—QI |fl<1’
which is a contradiction. It follows that both points 0 and ¢, are best appro-
ximations of z,.
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We conclude this remark with a few words concerning the characterization
of the polynomial of best approximation. First of all, let us have a compact
Hausdorff space 7' and an n-dimensional subspace £ c C(7') fulfilling Haar’s
condition. Let z ¢ C(T'), x non € ¥ be given; the best approximation e ¢ B of
z is thus uniquely determined. We assert now that the equation |x(t) — e(t)| =
= |x — e| is fulfilled for al least n 4 1 distinct points t. In fact, we know that

there exist » + 1 points ¢, ...,¢,,; and real numbers 4, ..., 4,,, with
n+1 n+1

le] 1 such that, forf—ZZ.t we have (x —e, ) = [ —e| and <E, > =

= O From the first equatlon 1t follows that |(t;) — e(t;)| = |x — e| whenever
A; = 0. We have, however, 1, & 0 for every ¢ since, in the contrary case,
E would not fulfil Haar’s condition (see the section 2° of the preceding proof).

A more precise result is hardly to be expected in the general case. It may
be shown on examples that there may be exactly » 4+ 1 points #; where
le(t;) — e(t;)] = |x — e| and «(t,) — e(t;) = |x — e| for every i.

Let us consider now the case where 7' is a compact interval <a, b)>. In this
case the above method yields a particularly simple proof of the classical theo-
rem of CEBYSEV. We intend to show that the theorem of Cebygev as well as
the related result of DE LA VALLEE-PoUSSIN are both immediate consequences
of the following lemma:

Let T = <{a, b) and let E an n-dimensional subspace of C(T') fulfilling Haar’s

condition. If t, <t, < ... <t,,, are given points of T, there exists exactly one
n+1

(apart from a scalar factor) nonzero linear combination f = > At; vanishing on K.
i=1
All numbers A; are different from zero and they alternate in sign.

Proof. The space E being n-dimensional, the n + 1 functionals ¢, are linear-
n+ 1
ly dependent on E. There exists a nonzero linear combination f = > A¢; such
=1
that <&, f> = 0. The assumption that 1; = 0 for some 7 would lead to a contra-
diction with our assumption concerning £. First of all, let n = 1 and let e be
a nonzero element of . It follows from Haar’s condition that e(¢) is different
from zero on the whole of 7'. Suppose now that Ae(t;) + A.e(t,) = 0. We have
sign e(f,) = sign e(t,) so that 1, and A, cannot be of the same sign. Suppose now
that » > 1 and that there is an index p such that 4, and 4,,, are of the same
sign. It follows that there exists an 7 such that at least one of the numbers
Ai_y or A, is of the same sign as 4,. Clearly we may suppose that 4; > 0.
Choose now two positive numbers «;_, and «;,, such that

Aicgig + Aigai > 0.
Now there exists an e ¢ E such that e(f;_;) = &;_,, €(t;;;) = x4 and e(t;) = 0
for every j different from ¢ — 1, ¢, ¢ + 1. Since <E, f) = 0, we have, in par-
ticular, <e, > = 0.
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This reduces to
Aigoiy + Ae(ts) + Aipaxigy = 0.

It follows that e(f;) << 0. Since e(t;_;) and e(¢;,,) are positive, there exist points
Si_qp € (ti_y, t;) and s, € (§;, t;41) With e(s;_;) = e(s;4,) = 0. This is a contra-
diction with Haar’s condition.

Theorem 2. Let T = {a, b) and let E be an n-dimensional subspace of C(T')
fulfilling Haar’s condition. Let x € C(T') be given. The following condition is suffi-
ctent and necessary for a point e € E to be the best approximation of x:

There exist n + 1 points t, <t, < ... <t,.; of T and a number ¢ with
le| = 1 such that x(t;) — e(t;) = (—1)i el — e].

Proof. Let e be the best approximation of x. We have then a functional
n+1

n+1
f =2 At; with 3 |2;| = 1 vanishing on E and such that (x — ¢, ) = |z — e|.
i=1 i=1
Hence «(t;) — e(t;) = |v — e|sign 4; whenever 4; £ 0. If the ¢, are arranged
in increasing order, it follows from the preceding lemma that the 4, are dif-
ferent from zero and alternate in sign. The rest is easy.

The second part of the theorem is a consequence of the following result
of de la Vallée-Poussin.

Let T = {a, by and let E be an n-dimensional subspace of C(T) fulfilling
Haar’s condition. Let xye C(T) and e, e £ be given. Suppose there exist n + 1
points t; <<ty < ... <t,., positive numbers &; and a number ¢ with |¢| =1
such that

Zo(t:) — eot;) = (—1) ee; .
We have then

min |z, — e| > min ¢,.
ecE 1gisn+1

Proof. According to the preceding lemma there exist positive numbers

n+ 1

Ay ooy Mgy With 3 2; = 1 such that

1
n+1

f= z (—1) edit;
i=1

vanishes on E. For every e ¢ £, we have

n+1
leg — €] = @y — e, [ = <X — €, [y = D Aie; = ming;
i=1

which concludes the proof.
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Peswome

3AMETKA OB AHNIIPOKCUMALUN HEHNPEPBIBHbIX
OVHRIUNA

BJACTUMMJI IITAK (Vlastimil Ptak), IIpara
(ITocrymmiro B pegaknuio 16/IX 1957 r.)

B crarse maercs npsmoc reomerpudeckoe IOKA3ATENbCTBO TEOPeMB Xaapa
0 NpabIMKeHMH HEITPCPLIBHAIX ()yHRIUIL.

Teopema. ITycmv T — romnarmmoe xaycdopgdoso npocmparncineo; 0603HAUUM
uepes C(T') npocmpancmeo ecex nenpepuisnwix gyrnkyuii na I ¢ obwviunoi Hop-
soit, Hlyeme E — danrnoe n-meproe nodnpocmpancmeo npocmpancmea C(T).
Hauaywwee npubaumcenue ramcdozo x e C(T) npu nomowu svemenmos npo-
cmparncmea E 6ydem odnosnauno onpedesennpim mozda u mosvko mo2oa, ecau
He 6ydem cywjecmeosams Henyaeol dnemenm e € B, umeowuii ne memee wem
N Pas3AuuHblL HYysel.
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