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HARMONICAL QUADRUPLET IN MOUFANG PLANE

VACLAV HAVEL, Praha.
(Received March 15, 1954.)

Suppose that in projective plane the Theorem of Complete Quadri-
lateral is valid. If the coordinates from an alternative division ring with
characteristic p + 2 are used it is possible to generalize some results
for harmonic conjugacy in Desarguesian planes. The author investi-
gates these generalized algebraic expressions of harmonic conjugacy of
point-quadzuplets.

§ 1. Geometrical considerations.

The usual axioms for a projective plane as a point-set are (cf. e. g. [3], § 2):

PG1 For any two points X = Y one and only one subset (line) XY exists so
that X e XY, Y e XY.

PG2" Any two distinct lines have one and only one point in common.

PG3 There exist three points not on the same line.

PG4 There are at least three points on every line.

With the symbol |4, B, C, ...| we denote the case, where points 4, B, C, ...
are distinct and on the same line. Now we introduce the Theorem of Complete
Quadrilateral ([6], § 1, p. 761):

|4, B, C|, |A, P,, P,|,AB & P P, =
D= (P,Bn A(P,C n P,B)) P, n AB (1)
is independent of the choice of P,, P,,
' C=+D. (1)

Note. If we construct D in this manner, we shall say that we have used (Q)
for A, B, C, P;, P, (in this order). For these four points 4, B, C, D we take the
symbol (4BCD).

Let Theorem of Complete Quadrilateral be universally valid in given pro-
jective plane ([3], § 6). First we deduce some results in the geometrical way.

Lemma 1. (ABCD) = (ABDC), (ABCD) = (BACD).
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Proof. We apply (Q) to the points 4, B, C, P,, P, to obtain D. Now we put
P, =P, P,=P, and use (Q) for 4, B, D, P;, P;. This implies (4BDC)
so that the first case is proved. In the same manner, using (Q) for 4, B, C, P,, P,
we obtain D. If we put P; = P,C n P,B, P, = P, and use (Q) for 4, B, C
P/, P, we infer (BACD) proving the second case.

Lemma 2a. (4BCD), Snon ¢ 4B, |S, 4, 4’|, |S, B, B'| |S, C, (|,
\D,A’, B, C'| = (A'B'C'D).

Proof. Assume the hypothesis of the lemma. Then we use (Q) for 4’, B’, D,
A, S, obtaining C’ € CS, thus (4'B’DC("). Using lemma 1, we get (4'B'C'D).

Lemma 2b. (ABCD), (A'B'C'D), AD + A'D = (S = AA" n BB, §' =
= AB' n BA4’, C, C").

Proof. If given assumptions are satisfied we use (Q) for 4, B, D, 4’, S.
Hence (C, 8, §’). Similarly we apply (Q) to the points 4", B’, D, 4, 8, proving
(C', 8, 8"). This completes the proof.

Lemma 2c. If 1, 2, 3, 4 are given points no three of which are collinear, then
(12 0 (13  24)(14 1 23), 34 0 (13 0 24)(14 0 23), 13 0 24, 14 0 23).

Proof. We use (Q) for 1, 4,14 n 23,2, 12 n 34 and obtain (1, 4, 14 n 23,
14 0 (12 n 34)(13 n 24)). It follows by lemma 2a that by projection from the
point 12 n 34 this quadruplet get into the wanted quadruplet.

Theorem 1. (ABCD) = (CDAB,).

Proof. First we use (Q) for points 4, B, C, P,, P,. We obtain D. Further
the relation (D, X' = P,C n P,D, P,, X = P,D n P,B)is valid (by lemma 2¢
used for points 4, B, Py, @, = P,C n P,B). The relation |[D,Y, @, (where
Y = P,B n @,D, @, = P,C n @,4) holds by Theorem of Complete Quadri-
lateral. In similar way we obtain from the quadrilateral 4, B, P,C' n @,B, @,
the relation (D, Y’ = D@, n P,C, @, ¥). It follows by projection from point C
(lemma 2a) (DY'YQ,) = (B@,YP,). Finally we have the relation |X, Y, C| by
lemma 2b, used for quadruples (BQ,YP,), (DX'XP,). Now we use (Q) for
D, C, A, X, P, so that we obtain (DCA4B) and by lemma 1 also (CDAB).

§ 2. Algebraic considerations.

We begin with the definition of the alternative division ring.

An alternative division ring is a non-void set with two binary operations +-, . so
that all elements form a commutative growp with respect to addiiion, the elements
distinct from zero form an alternative loop with respect to multiplication, in which
the unit exist; further both distributive laws for multiplication over addition hold.

We note, that in an alternative loop the equation zy = z is uniquely solvable
for any two given elements from z, y, z and the weak assotiative law for multi-
plication holds (this means, that the equations %y = x(xy), x(yx) = (zy)z,
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xy? = (zy)y are valid). The characteristic of an alternative division ring has the
usual sense. )

Theorem of Complete Quadrilateral holds universally in projective plane if
and only if it is possible to introduce for corresponding affine plane coordinates
from an alternative division ring with characteristic p =+ 2.

RutH MoUuFraxG introduces the following affine plane (cf. [5], § 1): Points are
ordered pairs of elements from an alternative division ring A with characteris-
tic p == 2. For two points we define (2, ¥,) = (%5, ¥s) <= Xy, = Xy, Yy = Y.
Lines are sets of points the coordinates of which fulfil equations oz + y — f =
= 0, x — 8 = 0 respectively (vor «, fe A4).

MArsHALL MALL uses the right-multiplication ([3], theorem 6,4). He replaces
the Theorem of Complete Quadrilateral by his Theorem L, which is more ge-
neral (without condition (1’)). In Hall plane characteristic 2 is not excluded.

Suppose that Moufang plane is given. We choose points 4 = (a, 0), B =
= (b, 0),C = (¢, 0), P, = (a, 1) for various a, b, c ¢ A, where 2¢ = a + band P,
is ideal point of y-axis. The sense of the case 2¢ = a + b will be mentioned
later. ‘

We use formulas &« = (b, — b,)(a; — a,)~L, f = b, + «a,, valid for the line
ax + y — f = 0 containing points (a,, b;), (@, b,), @; == a,. If b, = 0, then
y = by(a; — a,)"Ya, — x) is valid.

By easy computation we infer P,C ...y = (¢ — a)~}(c —z), (P,C n P,B).
Ay =(c—a)yYc—b)a—b)"Y)a—=zx), PB...y = (b—a) }(b— z).
Since 2¢ = a + b, (P,C n P,B) A and P,B are not parallel. We obtain

(c—a)y Hc—0b)a—0b)t=(b—a)'(b—d)a—d)", (2)
where D = (d, 0) satisfies (1).

Auxiliarylemma (z7(z —y))y ' =2 Nz —y)y™ ) =@y (@—y)z ' =
—y e —pe )=yt —ot

The proof follows immediately after multiplication.

Therefore if we put on the right side of (2) x = b —a, y = d — a we infer

by auxiliary lemma (¢ — d)~1(b —d)(@ —b) ! = — (@ —¢)"}(b —c)(@a — b)~?
and finally (by right-multiplication with (@ — b))
—(@—d)"'(b—d) = (@—c)" ' (b—c). 3)

It follows that for inverse elements — (b — d)~Y(a — d) = (b — ¢)~Y(a — c).
From (2) we deduce by auxiliary lemma (@ —b)"1(b —d)(d—a) ! =
= (@ —0b)"}(b —c)(@ —c)~* and by left-multiplication with (¢ — b) and by
a simple arrangement — (d — b)(d — a)~! = (¢ — b)(c — a)~1. Consequently
we have for inverse elements — (d —a)(d —b)~' = (¢ —a)(c — b)~L
Let (3) be valid for various a, b, ¢, d € A. The inequality 2¢ == a + b follows

because 2c =a +b=(a—d)"}(b—d) =1=a =>b. Hence the converse
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computation is possible so that points P,, P, exist with this property: if we
apply (Q) to the points 4, B, C, P, P, we obtain D. This completes the proof of
the following theorem:

Theorem 2. (ABCD) < (3) for distinct points A = (a, 0), B = (b, 0), C =
= (c,0), D = (d, 0).

From (2) it follows by auxiliary lemma — ((c—a) !'— (b—a)!) =
= (@ — b)"! — (@ — d)~! and therefore
2a—b)t=(a—c) '+ (@a—d)". (4)

The converse is also true. We have proved the following lemma:

Lemma 3. (3) <= (4) for various a, b, ¢c,d e 4.

Theorem 1 yields for various a,b,c,de A this corrolary: — (@ —d)='.
(b—d)=(@@a—¢c)'(b—c)<>—(a—d)" Y a—c) = (b—d) " 1{h —c). Now
we deduce this corrolary from (3).

We use

b—a)y Y c—Db)(a—c) l=(b—a) 1 (b—d)(a—d) !
for the equation of A(P,C n P,B) and we infer
D(P,C n A(P,C 0 Py) ...y = (b ——a) Yc—1Db))(d —c) )(d—x),
C(PBnAP,LCPB))...y=(((b—a) 1 (b—d)(c—d) " )(c—x).

If follows for the first line (by (b —a) ' = 3((b —¢)"! + (b —d)~!) and by
auxiliary lemma)

y=3e—d)—@d—b)" c—b)d — ) )d—a) = he—d) ' +
S @b — @ — )l — ) =} —d) + (d— ) 1)(d —2) =
= (c—d) " d —z) + 3(d — b)Y (d — 2).

Similarly for the second line:

y=30b—0c) Mb—d)c—d) '+ (¢c—d) ) (c—2) =
= 3(—(c—b)b—d)(c—d)"' + (c—d) )c—a) = }((c—d) ' —
— (=) 4 e —d) (e —2) = (c — )¢ —2) — }e—b) (e — a).
Both lines yield the same y for # = b. Further we have
l=1=(c—d)" Y c—d+ b—b)=1=>(c—d)"Y(d—0b)+ L=
= (c—d) Yc—b)— 4,
which completes the proof. Thus we may use (Q) for the points C, D, 4, P,C n
n A(P,C n P,B), P, and obtain (CDAB).

Let (ABCD) be valid. From (4) and from — 2(a —0)"1= (b —c¢)"1 4+
-+ (b —d)~1 (which is valid by (BACD)) we get by addition

(@—0)t 4+ (b—0)t + (@a—d) "t + (b —d)~1 = 0.
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Lemma 4. If for every triad of various nonzero elements «, 8,y € A no two of
which are inverse, various a,b,c,de A exist so that x = a—c, f = a —d,
y = b — c and (3) holds, then A is commutative field. '

Proof. It follows from (3) and from theorem 1, that the equations — &-1f =
= y18, — a1y = 716 (where § = f§ 4 y — «) are satisfied. We obtain there-
fore

Y(7f) = Flxly) - (5)

If two of elements «, f8, y are equal or inverse, then (5) holds also (since 4 is an
alternative division ring, [7], § 1). The case y = 0 or f = 0 is trivial. Thus (5)
holds for every o == 0, 8, y. If we choose « = 1, we obtain the commutativity.
From commutativity the associativity follows by ([10], § 3 and final note) and
A is a field. In belonging plane the Theorem of Pappus holds.

Ruth Moufang had showed the validity of theorem 1 if the given plane is
linearly ordered and the Theorem of Complete Quadrilateral holds universally,

By the results [2] (§ 5, theorem C), the plane is then Desarguesian. We have
seen in § 1 thus the assumptions of order are superfluous. The assumption of
affine plane is useful for algebraic considerations.

Lemma 5. Let 4 = (a,0), B= (b,0), C = (¢,0), D = (d, 0) are various
points and I ideal point of x-axis. Then (ABCI) < 2¢c = a + b, (IBCD) <
<>2b=c+d.

Proof. 1. Let (ABID) be valid. If P, = (a, 1) and P, is ideal point of y-axis,
then P.C ...y —1 =0, P,CP,B = (b,1), A(P,C n P,B) ...y + (a —b)"x —
—(@—0b)"ta=0 PB..y+0b—a)yz—(b—a)"b=0, 2d=a-}b.
Conversely from 2d = a + b (4BID) follows.

2. Let (ABCX) be valid, where ¢ = 4(a + b). Then P,C ...y + {(b —
—a) xe—3b—a)"'—3a+b)=0,P,.CnP,B=(b,—1),(P,CnP,B)A...y+
+@b—a)yz—b—a)ta=0,PB...y +b—a)y"x—(b—a) b =0.
Consequently (P,C n P,B) A n P B is the ideal point of P,B and X as a meet
of ideal line and z-axis is the ideal point of z-axis. Conversely from 2¢c = a + b
the relation (ABCI) follows. Further we verify easily (ABCI)=-(BACI),
(ABCI) = (ABIC).

3. Let (4ICD) be valid. Then P,C...y + (c—a) x — (c —a) ¢ = 0,
P,C n P,B is ideal point of P,C, (P,C n P,B)A ...y + (¢c—a) ' — (c —
—a)"'a=0, PPB...y—1=0, d=(c—a)(— 1+ (c—a) la) = 2a —c.
Conversely from d = 2a — ¢ the relation (A41CD) follows. We verify again
(AICD) = (IACD). _

Note. The generalised Theorem of Complete Quadrilateral (without assert-
ion (1')) is valid universally in given projective plane if and only if the corres-
ponding affine plane may be coordinatized from an alternative division ring
with general characteristic p.
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Some preceding considerations are valid also for characteristic p = 2. If
p=2 then 2¢c +a +b<>0 a + b<>a = b."Thus for various a,b,ce 4
the hypothesis 2¢ = a -+ b is satisfied. )

Lemma I. If p = 2, then the generalized harmonic quadruplet (ABCD) with
distinct 4, B, C satisfies C = D.

Proof.(4)=>=0=(a—c¢) '+ (@—d) '=>—(@—¢c)=a—d=>2a=0=
= c¢ + d =c¢ = d. Further the proof of lemma 5 may be modified also for
p = 2.In case 1 lines P,B, (P,C n P,B) A are parallel and D = I. In case 3 we
obtain similarly C = D.

Lemma Il. Let p be general and (3) holds for some a,b,c,de A, a ¢ =
=d +b. Then p = 2.

Proof. 8)=—(a—c¢) Y b—c)= (a—c) (b —c) =>2(a—c) }(b—c) =
= 0. By hypothesis (@ — ¢)"%(b — ¢) == 0, thus finally p = 2.

Still we make this remark: If in the generalized sense (4BII) or (AIBB)
holds for same triad 4, B, I (4, B are various points distinct from the ideal
point I) then p = 2.

Therefore we have proved this known geometric result ([9], for Desarguesian
planes also [4], p. 229): If the Generalized Theorem of Complete Quadrilateral
is valid universally in given plane and (4BCC) holds for some triad |4, B, C|
then: (V,V,V3V,), Vi, Vo, Vs| =V, =TV,

If we use the notation of Generalized Theorem of Complete Quadrilateral,
then ¢ = D < |C, P,, P,B n A(P,C n P,B)|. '
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Pesiome.

FAPMOHNYECKAS CONNPAYKEHHOCTb HA IIJIOCKOCTU MY®AHTA

B. TABEJI, (V. Havel), IIpara

(ITocrynuno B pegaknuio 15/11T 1954 r.)

B cratee mccseyercss npoeKTUBHASA IIJIOCKOCTH, B KOTOPOIl YHUBEPCAIBHO
cupasejunBa Teopema o nosanoM terpasgpe. Ilycrs (ABCD) oGosnavaer rap-
MoHn4eckoe orxomenne touex A, B, O, D. B § 1 noxasaHo IreoMeTpud4ecKIM
meroyioM, uro ornouenuss (ABCD), (CDAB) sKBUBaJeHTHH.

B § 2 uenonpsopana adduunas mIoCKoCTh ¢ KOOPAMHATAMM N3 ajbTepHa-
tuBHOro Tena 7' xapakrepumerukn = 2 (naockocts Mydanra).

Econn npavas p oGpasyer 0cb & 9T0it NIOCKOCTH ¢ HecobCTBeHHOI TOUKOM N,
TOrAA JUIA pasandueix touexk A = (a, 0), B = (b, 0), C = (¢, 0), D = (d, 0),
a,b,c,deT, cnpaBeuIuBLL CO OTHOLICHUSA:

(ABCDy < —(@—c¢) 1 (a—d) = (b—c)1(b—d) <= 2(a—0b)! =

=(@a—c¢)yt+(@a—d)y = (a—c)t+ (a—d)y 14 (b—c)t +
4+ (b—d)"1 =0, (ABCN)<>c = La +b).

Hexoropbie pe3ynbTarTsl § 2 0CTAIOTCA B CHJIe TAK:Ke JIA XapaKTePUCTUKU 2.
Ha ocnHoBanum 9THX pesy/lbTAaTOB IPOCTHIM IIyTeM J[OKasaH pesyuabrar I
Nurospra: Ecan Ha JauHO# IIOCKOCTH CIpaBeINBa TeOpeMa O IOJHOM Te-
Tpasape C JMHEHIHO 3aBUCHMEIMHI IMATOHAJLHEIMH TOYKAMM JJIA OJHOTO Te-
Tpasjipa, TO OHA CNpaBeJTiBa YHHBEPCAJIBHO.
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